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A Appendix: Model Extensions

In this section, we describe a number of extensions of our approach that can be used to formulate

certain dimensions of the appointment scheduling problem at a more detailed level.

A.1 Generalization of the Multinomial Logit Choice Model

Multinomial logit model assumes that the preference weight associated with one alternative does

not depend on the offer set. However, in the appointment scheduling context, it is possible that

patients place a higher value on the choice of seeking care elsewhere when too few appointment

choices are offered. To capture this dependence, we can use a general multinomial logit model

introduced by Gallego et al. (2011). In this extended choice model, each day in the scheduling

horizon has two parameters, denoted by vj and wj . If we offer the subset S of days, then a patient

chooses day j in the scheduling horizon with probability Pj(S) = vj/(1 +
∑

k 6∈S wk +
∑

k∈S vk),

where the quantity
∑

k 6∈S wk captures the increase in the preference weight of not booking an

appointment as a function of the days that are not offered. All of our results in the paper continue

to hold under this more general form of the multinomial logit model.

A.2 Capturing Heterogeneity in Patient Choice Behavior

Our approach implicitly assumes that the choice behavior represented by the multinomial logit

model captures the overall patient population preferences. This approach is reasonable either when

the patient population is homogeneous in its preference profile, or if we do not have access to

additional information that can classify patients in terms of their preferences at time of making

scheduling decisions. When additional information is available, subset offer decisions may depend

on such information. For example, considering our computational study, if patients having urgent

and ambiguous conditions arrive simultaneously into the system and we have information about the

condition of the patient before offering the available appointment days, then we can define two sets

of decision variables hU = {hU (S) : S ⊂ T } and hA = {hA{S) : S ⊂ T } to respectively capture the

probability that each subset of days is offered to a patient with urgent and ambiguous conditions. If

we make the subset offer decisions with information about the patient condition, then we can use

an approach similar to the one in this paper and transform a static model with exponentially many

subset offer probabilities into an equivalent static model whose decision variables grows only linearly

in the length of the scheduling horizon. Furthermore, building on this static model, we can also

formulate a dynamic model by using one step of the policy improvement algorithm.

A.3 Capturing Day-of-the-Week Effect on Preferences

In our static model, we assume that the demand is stationary and the preference of a patient for

different appointment days depends on how many days into the future the appointment is made,
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rather than the particular day of the week of the appointment. This assumption allowed us to

focus on the expected profit per day in problem (2)-(4). In practice, however, the patient demand

may be nonstationary, depending on the day of the week. Furthermore, the preference of a patient

for different days of the week may be as pronounced as the preference for different appointment

delays. It is possible to generalize our model so that both of these effects are captured.

For instance, assume that nonstationarities follow a weekly pattern and the scheduling horizon

τ is a multiple of a week. In this case, we can work with the extended set of decision variables by

letting ht(S) be the probability with which we offer the subset S of days given that we are on day t

of the week. Using these decision variables, we can construct a model analogous to problem (2)-(4),

but we account for the total expected profit per week, rather than expected profit per day. As an

example, consider a clinic that is open 7 days a week and is using an appointment window of 14

days. Without loss of generality, we consider the week consisting of days 15 to 21, so the earliest

day when patients can be schedule into this week is day 1. Adapting the notation used earlier to

the non-stationary setting, we let λt denote the mean demand for day t.

Let Tt = {t, t + 1, . . . , t + 14} represent the set of days in which patients arriving on day t

can be scheduled. The decision variable in this model is ht(S), which represents the probability

of offering the subset of days S ⊂ Tt on day t. Note that the offering set probability distribution

for future days are nonstationary as well and depends on the day of the week. To be concise,

we write the set {j − 7 : j ∈ S} as S − 7, i.e., the set S − 7 is obtained by subtracting every

element in S by 7 days. Then, ht(S) = ht−7(S − 7). Let Pt(S) be the probability that an arriving

patient will choose day t when offered set S. Then, for a patient who arrives on day t − j, the

probability that she will choose day t is given by
∑

S⊂Tt−j Pt(S)ht−j(S). Thus the number of

patients who schedule an appointment to day t and are retained until the morning of day t is

given by a Poisson random variable with mean
∑14

j=0 λt−j r̄j
∑

S⊂Tt−j Pt(S)ht−j(S). Similarly, the

number of patients who actually show up on day t is also a Poisson random variable with mean∑14
j=0 λt−j s̄j

∑
S⊂Tt−j Pt(S)ht−j(S). Then, we can formulate a static model as

max
21∑

t=15

14∑

j=0

λt−j s̄j
∑

S⊂Tt−j
Pt(S)ht−j(S)

− θ
21∑

t=15

E
{[

Pois
( 14∑

j=0

λt−j r̄j
∑

S⊂Tt−j
Pt(S)ht−j(S)

)
− C

]+}

subject to
∑

S⊂Tt
ht(S) = 1 ∀ t ∈ {1, 2, . . . , 21}

ht(S) = ht−7(S − 7) ∀ t ∈ {8, 9, . . . , 21}, ∀S ⊂ Tt
ht(S) ≥ 0, ∀ t ∈ {1, 2, . . . , 21}, ∀S ⊂ Tt.

The first constraint ensures that the probability we offer a set of days in any given day is one,

whereas the second constraint captures the weekly pattern of decision variables. For this extended

version of problem (2)-(4), we can still come up with a transformation similar to the one in Section
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4.1 that reduces the number of decision variables from exponential in the length of the scheduling

horizon to only linear.

Finally, another simplifying assumption our model makes is that while patients have preferences

for which day of the week they would like to be seen they do not have any preferences for the specific

appointment time of the day. It is important to note that the same way we formulate preferences

on different days of the week (as shown above), we can also incorporate preferences for different

times of the day, as long as we make the assumption that the expected cost the clinic incurs on a

given day only depends on the total number of patients scheduled for that day, but not the specific

times of the appointments.

B Appendix: Omitted Results

In this section, we give the proofs of the results that are omitted in the paper.

B.1 Proof of Proposition 1

We complete the proof of Proposition 1 in two parts. First, assume that h∗ = {h∗(S) : S ⊂ T } is an

optimal solution to problem (2)-(4). Letting x∗j =
∑

S⊂T Pj(S)h∗(S) and u∗ =
∑

S⊂T N(S)h∗(S),

we need to show that (x∗, u∗) is a feasible solution to problem (5)-(8) providing the same objective

value as the solution h∗. We have

∑

j∈T
x∗j + u∗ =

∑

S⊂T
h∗(S)[

∑

j∈T
Pj(S) +N(S)] =

∑

S⊂T
h∗(S) = 1,

where the second equality follows by the definition of the multinomial logit model and the third

equality follows since h∗ is feasible to problem (2)-(4). Thus, the solution (x∗, u∗) satisfies the first

constraint in problem (5)-(8). On the other hand, using 1(·) to denote the indicator function, we

have x∗j/vj =
∑

S⊂T [1(j ∈ S)h∗(S)/(1 +
∑

k∈S vk)] by the definition of Pj(S) in the multinomial

logit model. Noting that u =
∑

S⊂T [h∗(S)/(1 +
∑

k∈S vk)], it follows that x∗j/vj ≤ u, indicating

that the solution (x∗, u∗) satisfies the second set of constraints in problem (5)-(8). Since x∗j =∑
S⊂T Pj(S)h∗(S), comparing the objective functions of problems (2)-(4) and (5)-(8) shows that

the solutions h∗ and (x∗, u∗) provide the same objective values for their problems.

Second, assume that (x∗, u∗) is a feasible solution to problem (5)-(8). We construct the solution

h∗ as in (9). To see that the solutions (x∗, u∗) and h∗ provide the same objective values for their

respective problems, we observe that

∑

S⊂T
Pj(S)h∗(S) =

τ∑

i=0

Pj(Si)h
∗(Si) =

τ∑

i=j

Pj(Si)h
∗(Si) =

τ∑

i=j

vj

[x∗i
vi
− x∗i+1

vi+1

]
= x∗j ,

where the first equality is by the fact that h∗(S) takes positive values only for the sets S0, . . . , Sτ

and ∅, the second equality is by the fact that j ∈ Si only when j ≤ i and the third equality follows
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by the definition of h∗(Si) and noting that x∗τ+1 = 0. Using the equality above and comparing the

objective functions of problems (2)-(4) and (5)-(8) show that the solutions h∗ and (x∗, u∗) provide

the same objective values for their problems. To see that the solution h∗ is feasible to problem

(2)-(4), we let Vi = 1 +
∑

k∈Si vk for notational brevity and write
∑

S⊂T h
∗(S) as

u∗ − x∗0
v0

+

τ∑

j=0

Vj

[x∗j
vj
−
x∗j+1

vj+1

]
= u∗ + (V0 − 1)

x∗0
v0

+ (V1 − V0)
x∗1
v1

+ . . .+ (Vτ − Vτ−1)
x∗τ
vτ

= 1,

where the first equality follows by rearranging the terms and using the convention that x∗τ+1 = 0

and the second equality is by noting that Vi − Vi−1 = vi and using the fact that (x∗, u∗) is feasible

to problem (5)-(8) so that
∑τ

j=0 x
∗
j + u∗ = 1. 2

B.2 Lemma 7

The following lemma is used in Section 4.

Lemma 7. Letting F (α) = E
{

[Pois(α)− C]+
}

, F (·) is differentiable and convex.

Proof. The proof uses elementary properties of the Poisson distribution. By using the probability

mass function of the Poisson distribution, we have

F (α) =
∞∑

i=C+1

e−α αi

i!
(i− C) =

∞∑

i=C+1

e−α αi

(i− 1)!
−

∞∑

i=C+1

e−α αi

i!
C

= α

∞∑

i=C

e−α αi

i!
− C

∞∑

i=C+1

e−α αi

i!
= αP{Pois(α) ≥ C} − C P{Pois(α) ≥ C + 1}. (25)

Thus, the differentiability of F (·) follows by the differentiability of the cumulative distribution

function of the Poisson distribution with respect to its mean. For the convexity of F (·), we have

dP{Pois(α) ≥ C}
dα

= −dP{Pois(α) ≤ C − 1}
dα

= −
C−1∑

i=0

d
(
e−α αi
i!

)

dα

=
C−1∑

i=0

e−α αi

i!
−
C−1∑

i=1

e−α αi−1

(i− 1)!
= P{Pois(α) = C − 1}.

In this case, if we differentiate both sides of (25) with respect to α and use the last chain of

equalities, then we obtain

dF (α)

dα
= P{Pois(α) ≥ C}+ αP{Pois(α) = C − 1} − C P{Pois(α) = C}

= P{Pois(α) ≥ C}+ α
e−α αC−1

(C − 1)!
− C e−α αC

C!
= P{Pois(α) ≥ C}.

To see that F (·) is convex, we use the last two chains of equalities to observe that the second

derivative of F (α) with respect to α is P
{
Pois(α) = C − 1

}
, which is positive. 2
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B.3 Proof of Corollary 3

By Proposition 2, there exists an optimal solution x∗ to problem (5)-(8) that satisfies (16). We

define the subsets S0, S1, . . . , Sτ as in the proof of Proposition 1 and construct an optimal solution

h∗ to problem (2)-(4) by using x∗ as in (9). In this case, since x∗ satisfies (16) for some k ∈ T , only

two of the decision variables {h(S) : S ⊂ T } can take on nonzero values and these two decision

variables are h∗(Sk−1) and h∗(Sk). Thus, the desired result follows by observing that Sk is a subset

of the form {0, 1, . . . , k}. 2

B.4 Proof of Lemma 4

We let π∗(S) be the steady state probability with which we offer the subset S of days under the

optimal, possibly state-dependent, policy. So, if we consider a particular day in steady state, then

the number of patients that are scheduled for this day j days in advance is given by a Poisson random

variable with mean
∑

S⊂T λPj(S)π∗(S). Therefore, if we use the random variable A∗j to denote

the number of patients that we schedule for a particular day j days in advance in steady state, then

A∗j has mean
∑

S⊂T λPj(S)π∗(S). We note that A∗1, A
∗
2, . . . , A

∗
τ are not necessarily independent of

each other, since the decisions under the optimal state-dependent policy on different days can be

dependent. Similarly, in steady state, we let S∗j be the number of patients that we schedule for a

particular day j days in advance and that show up under the optimal state-dependent policy. Finally,

we let R∗j be the number of patients that we schedule for a particular day j days in advance and that

we retain until the morning of the appointment under the optimal state dependent policy. Noting

that the show-up and cancellation decisions of the patients are independent of how many patients

we schedule for a particular day, we have E{S∗j } = s̄j E{A∗j} and E{R∗j} = r̄j E{A∗j}. In this case,

the average profit per day generated by the optimal state-dependent policy satisfies

V ∗ = E
{∑

j∈T
S∗j
}
− θE

{[∑

j∈T
R∗j − C

]+}
≤
∑

j∈T
E{S∗j } − θ

[∑

j∈T
E{R∗j} − C

]+

=
∑

j∈T

∑

S⊂T
λ s̄j Pj(S)π∗(S)− θ

[∑

j∈T

∑

S⊂T
λ r̄j Pj(S)π∗(S)− C

]+
≤ ZDET .

In the chain of inequalities above, the first inequality is by the Jensen’s inequality. The second

equality is by E{S∗j } = s̄j E{A∗j} and E{R∗j} = r̄j E{A∗j}. To see the second inequality, we note

that {π∗(S) : S ⊂ T } is a feasible but not necessarily an optimal solution to the problem

max
∑

j∈T

∑

S⊂T
λ s̄j Pj(S)w(S)− θ

[∑

j∈T

∑

S⊂T
λ r̄j Pj(S)w(S)− C

]+

subject to
∑

S⊂T
w(S) = 1

w(S) ≥ 0 S ⊂ T

and the optimal objective values of the problem above and problem (20)-(23) are equal to each

other, which can be verified by using the argument in the proof of Proposition 1. 2
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B.5 Proof of Proposition 5

Letting (x̂, û) be an optimal solution to problem (20)-(23), we have Π(x∗) ≥ Π(x̂). Since we

can always offer the empty set with probability one, the optimal objective value of problem

(5)-(8) is nonnegative and we obtain Π(x∗)/V ∗ = [Π(x∗)]+/V ∗ ≥ [Π(x̂)]+/V ∗. Using Lemma

4, we continue this chain of inequalities as [Π(x̂)]+/V ∗ ≥ [Π(x̂)]+/ZDET ≥ Π(x̂)/ZDET =

1 − (ZDET −Π(x̂))/ZDET . So, it is enough to show that the second term on the right side of

(24) upper bounds (ZDET − Π(x̂))/ZDET . For a Poisson random variable with mean α, we claim

that

E{[Pois(α)− C]+} ≤ [α− C]+ + α/
√

2π C. (26)

This claim will be proved at the end. With this claim and letting β =
∑T

j=1 λ s̄j x̂j and α =∑T
j=1 λ r̄j x̂j for notational brevity, we obtain

ZDET −Π(x̂)

ZDET
=

[β − θ [α− C]+]− [β − θE{[Pois(α)− C]+}]
ZDET

≤

θ α√
2π C
ZDET

≤

θ λ r̄0√
2π C
ZDET

, (27)

where the second inequality is by noting that
∑

j∈T x̂j ≤ 1, r̄0 ≥ r̄1 ≥ . . . ≥ r̄τ so that α ≤ λ r̄0.

We proceed to constructing a lower bound on ZDET . The solution (x̃, ũ) we obtain by setting

x̃0 = v0
1+v0

, ũ = 1
1+v0

and all other decision variables to zero is feasible to problem (20)-(23). Thus, if

λ r̄0
v0

1+v0
≤ C, then we can lower bound ZDET as ZDET ≥ λ s̄0 x̃0−θ [λ r̄0 x̃0−C]+ = λ s̄0

v0
1+v0

. On

the other hand, if λ r̄0
v0

1+v0
> C, then the solution (x̃, ũ) we obtain by setting x̃0 = C

λ r̄0
, ũ = 1− C

λ r̄0

and all other decision variables to zero is feasible to problem (20)-(23). Thus, if λ r̄0
v0

1+v0
> C,

then we can lower bound ZDET as ZDET ≥ λ s̄0 x̃0 − θ [λ r̄0 x̃0 − C]+ = s̄0
C
r̄0

. Collecting the two

cases together, we lower bound ZDET by s̄0 min
{
λ v0

1+v0
, Cr̄0

}
. Continuing the chain of inequalities

in (27) by using the lower bound on ZDET , we obtain

θ λ r̄0√
2π C
ZDET

≤

θ λ r̄0√
2π C

s̄0 min

{
λ

v0

1 + v0
,
C

r̄0

} .

Arranging the terms in the last expression above yields the desired result.

Finally, we prove the claim (26) made above. For k ≥ C+1, we observe that [k−C]+−[α−C]+ ≤
k − α. In particular, for k ≥ α, this inequality follows by the Lipschitz continuity of the function

[·−C]+. For k < α, we have C+ 1 ≤ k < α and it follows [k−C]+− [α−C]+ = k−α, establishing

the desired inequality. In this case, the result in the lemma follows by noting that

E{[Pois(α)− C]+} =

∞∑

k=C+1

[k − C]+
e−ααk

k!
≤ [α− C]+ +

∞∑

k=C+1

[
[k − C]+ − [α− C]+

] e−ααk
k!

≤ [α− C]+ +

∞∑

k=C+1

(k − α)
e−ααk

k!
= [α− C]+ +

e−ααC

C!
α ≤ [α− C]+ +

e−CCC

C!
α,
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where the first inequality follows by adding and subtracting [α − C]+ to the expression on the

left side of this inequality, the second inequality follows by the inequality derived at the beginning

of the proof, the last equality is by arranging the terms in the summation on the left side of

this inequality and the third inequality is by noting that the function f(α) = e−ααC attains its

maximum at α = C. In this case, the result follows by noting that C! ≥
√

2π C(C/e)C by Stirling’s

approximation and using this bound on the right side of the chain of inequalities above. 2

B.6 Proof of Proposition 6

The proof follows from an argument similar to the one in the proof of Proposition 1. Assume that

h∗ = {h∗(S) : S ⊂ T } is an optimal solution to problem (2)-(4) with the additional constraints

ht(S) ∈ {0, 1} for all S ⊂ T . Letting x∗j =
∑

S⊂T Pj(S)h∗(S) and u∗ =
∑

S⊂T N(S)h∗(S), we can

follow the same argument in Section B.1 to show that (x∗, u∗) with x∗ = (x∗0, . . . , x
∗
τ ) is a feasible

solution to problem (5)-(8) with the additional constraints xj/vj ∈ {0, u} for all j ∈ T . Furthermore,

the objective values provided by the two solutions for their respective problems are identical. On

the other hand, assume that (x∗, u∗) with x∗ = (x∗0, . . . , x
∗
τ ) is an optimal solution to problem

(5)-(8) with the additional constraints xj/vj ∈ {0, u} for all j ∈ T . We reorder and reindex the

days in the scheduling horizon so that we have u∗ = x∗0/v0 = x∗1/v
∗
1 = . . . = x∗j−1/v

∗
j−1 ≥ x∗j/xj =

x∗j+1/vj+1 = . . . = x∗τ/v
∗
τ = 0. We define the subsets S0, S1, . . . , Sτ as Sj = {0, 1, . . . , j}. For

notational convenience, we define x∗τ+1 = 0. In this case, letting

h∗(∅) = u∗ − x∗0
v0

and h∗(Sj) =
[
1 +

∑

k∈Sj
vk

] [x∗j
vj
−
x∗j+1

vj+1

]

for all j = 0, 1, . . . , τ and letting h∗(S) = 0 for all other subsets of T , we can follow the same

argument in Section B.1 to show that {h∗(S) : S ⊂ T } is a feasible solution to problem (2)-(4)

with the additional constraints ht(S) ∈ {0, 1} for all S ⊂ T . Furthermore, we can check that the

two solutions provide the same objective value for their respective problems. 2

B.7 Sample Survey Questions
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Figure 1: Sample choice question under ambiguous health condition.

Figure 2: Sample choice question under urgent health condition.
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