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n many service systems, customers are not served in the order they arrive, but according to a priority scheme

that ranks them with respect to their relative “importance.” However, it may not be an easy task to determine
the importance level of customers, especially when decisions need to be made under limited information.
A typical example is from health care: When triage nurses classify patients into different priority groups, they
must promptly determine each patient’s criticality levels with only partial information on their conditions.

We consider such a service system where customers are from one of two possible types. The service time
and waiting cost for a customer depends on the customer’s type. Customers’ type identities are not directly
available to the service provider; however, each customer provides a signal, which is an imperfect indicator of
the customer’s identity. The service provider uses these signals to determine priority levels for the customers
with the objective of minimizing the long-run average waiting cost. In most of the paper, each customer’s signal
equals the probability that the customer belongs to the type that should have a higher priority and customers
incur waiting costs that are linear in time. We first show that increasing the number of priority classes decreases
costs, and the policy that gives the highest priority to the customer with the highest signal outperforms any
finite class priority policy. We then focus on two-class priority policies and investigate how the optimal policy
changes with the system load. We also investigate the properties of “good” signals and find that signals that
are larger in convex ordering are more preferable. In a simulation study, we find that when the waiting cost
functions are nondecreasing, quadratic, and convex, the policy that assigns the highest priority to the customer
with the highest signal performs poorly while the two-class priority policy and an extension of the generalized
cp rule perform well.
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1. Introduction relying on his or her visual impression of the patients
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There are many service systems where customers are
not served in the order they arrive, but according
to some priority scheme. Such systems typically aim
to give priority to their “important” customers, who
are more sensitive to delays than the others. How-
ever, in some cases, it is not possible to identify these
customers perfectly, and thus service providers try to
determine the relative importance of the customers
based on the limited information about them.

There are various settings where priority decisions
have to be made under imperfect information. Pa-
tients visiting emergency rooms or those who are
injured in mass-casualty incidents go through a triage
process where a triage nurse assigns them a priority
level within a very short time based on limited infor-
mation, mainly by checking basic signs and mostly

(Frykberg 2002). Similarly, 911 operators have the dif-
ficult job of determining the relative importance of
different calls based on the answers that the callers
provide to some standard questions (Palumbo et al.
1996 and Reilly 2006). In some countries, similar clas-
sification problems arise in managing waiting lists for
public-sector services under budget limitations. For
example, in Australia, because of budget restrictions,
patients cannot be given access to psychotherapy ser-
vices as the need arises, and therefore they are put
on waiting lists and are given priority according to
their conditions (Walton and Grenyer 2002). The prac-
tice of giving priorities as opposed to following the
first-come-first-served (FCES) policy is not exclusive
to service systems in the public sector. Many com-
panies give preferential treatment to their “valuable”
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customers or to those who show signs of dissatis-
faction. For example, Charles Schwab Corporation’s
historically most profitable customers wait signifi-
cantly less than the other customers for their calls
to get answered (Brady 2000). On the other hand,
for call centers, companies have been developing
new tools, which monitor customers’ conversations
with customer representatives, detect deviations from
the customers’ regular speech and alert supervisors
accordingly with the objective of identifying frus-
trated customers (or at least those who show signs of
anger) and possibly give them preferential treatment
(Shin 2006).

All these examples share a common characteristic:
decision makers involved have to determine priorities
under less-than-perfect information. Triage nurses do
not know exactly who the critical patients are, but they
simply make their best educated guesses. Some scor-
ing systems have been proposed to help make triage
decisions (e.g., the Trauma Score, the Circulation, Res-
piration, Abdomen, Motor, Speech (CRAMS) scale,
and the Prehospital Index), but research has shown
that these scoring systems do not work well in practice
(Baxt et al. 1989). Similarly, companies do not actually
know which customers are going to be more profitable
in the future. Various metrics have been developed
and adopted by the companies to help make that deci-
sion. Some examples are the recency frequency mon-
etary value, share of wallet, past customer value, and
customer lifetime value (CLV). Among these metrics,
CLV has recently become more popular because it
is being regarded as a more forward-looking metric
as it tries to predict customers’ future behavior, and
takes this prediction into account together with any
past information about the customers when determin-
ing customers’ value to the company (Kumar 2008).
Clearly, however, neither CLV nor any of the other
metrics can perfectly identify the profitable customers.
Foregoing priorities altogether is always an option,
but in some cases, is not “affordable.” When resources
are severely limited, they need to be rationed in some
way even when classification errors are inevitable. In
many cases, for example, there is no alternative but
to triage patients even when there is a high risk of
making mistakes. For companies in the service sector,
giving priorities may seem to be a choice rather than a
necessity, but it appears that some are willing to take

the risk of alienating some of their customers to keep
the seemingly more valuable ones happy.

The objective of this paper is to provide some in-
sights into this problem of assigning priorities under
imperfect information. There are several questions
of interest. For example, if we do not have perfect
information on the customers, what kind of informa-
tion about the customers can we use to classify them
and how should we use this information to at least
improve on the standard FCFS policy? What kind of
information is more useful than others? How do the
“optimal” prioritization policies change with certain
system parameters such as the customer load?

To investigate these questions, we consider a queue-
ing model where arriving customers belong to one of
two different types: (1) type 1 customers are those who
deserve to get the higher priority, and (2) type 2 cus-
tomers are the ones who are supposed to be given
lower priority. Both customer types have different
service requirements and different delay sensitivities.
Differing from most of the literature, we assume that
customers’ types are not directly observable. However,
each customer provides a signal, which is a quantified
summary of the relevant information about the cus-
tomer. In most of the paper, the signal from each cus-
tomer is the probability that the customer is of type 1,
which can be computed using the information avail-
able. However, we also consider the possibility that
even that information may not be available, and the
service provider may have to use less informative sig-
nals that do not reveal the type probabilities, but a
tendency to be of type 1 or 2 in some stochastic sense.
Depending on the application, these signals can dif-
fer. For example, in patient triage, the signal can be a
criticality score computed based on the patients” con-
dition (similar to the way the CRAMS scale and other
existing triage scores are computed). In call centers, it
can be any past information about the customers (e.g.,
total purchases within the last year) that is an indicator
of how valuable the customer is to the firm.

When each customer’s signal represents the proba-
bility of that customer being of type 1 and the wait-
ing costs are linear in time, we show that increasing
the number of priority classes decreases the long-run
average cost for the whole system and that the highest-
signal-first (HSF) policy, which gives higher priority
to those with higher probabilities of being type 1,
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outperforms any priority policy with a finite number
of priority classes. (We show in the paper that the HSF
policy is, in fact, a generalization of the well-known
cp rule for priority queues.) Despite this result, how-
ever, policies with finite number of priority classes
are still of interest because they are commonly used
(e.g., in patient triage) and might be more practi-
cal in some cases. Furthermore, our numerical anal-
ysis suggests that switching from a two-class policy
to HSF may not bring much benefits. Therefore we
specifically analyze two-class priority policies, which
are easy to implement and whose simple structure
makes it easier to generate useful insights on the rela-
tionships between the optimal priority policies and
certain system parameters and also on the character-
istics of “good” signals. We find that the search for an
optimal two-class policy can be reduced to a search
for the optimal threshold value on the customer sig-
nal, which separates high-priority customers from the
low-priority ones. Interestingly, it turns out that the
optimal threshold value gets smaller as the system
load increases and converges to zero as the load con-
verges to 1. This means that as the load gets larger,
more customers need to be classified as high prior-
ity, and for very high levels of customer load, only
those customers with a very small probability of being
type 1 are given lower priority.

The service provider can have alternative signals at
her disposal, each computed by using different pieces
of the available information or processing the same
information differently. The question then arises as
to which one of these signals to use. Are there any
characteristics that “better” signals possess? We find
that high variability is a desirable feature for a signal.
Although it is not true that signals with higher vari-
ance necessarily lead to lower costs, we show that for
two-class priority policies, the long-run average cost
is lower under signals that are larger in convex order-
ing (which implies higher variance). Our numerical
analysis suggests that the same insight holds for the
HSF policy as well.

For systems where signals do not reveal customers’
type probabilities, but are “weaker” indicators of type
identities, we find conditions under which, signals
can still be used to determine priorities. First, we
find that if signals coming from type 1 customers are
larger than signals coming from type 2 customers in

likelihood ratio ordering, then higher signals imply
higher probabilities of being type 1. Thus, even if
the service provider does not know type probabili-
ties of the customers, she can still order them accord-
ing to their type 1 probabilities by simply ordering
them according to their signals. However, if the order-
ing between the signals of the two types is weaker
(e.g., only the hazard rate ordering or usual stochas-
tic ordering holds between signals), this is no longer
true. Nevertheless, as long as signals of type 1 cus-
tomers dominate the signals of type 2 customers in
the usual stochastic sense, we can show that by giving
priority to the customer with the highest signal, the
service provider cannot do worse than using FCFS.

For all of the results discussed above, we assume
that customers’ waiting cost functions are linear in
time. Using simulation, we test how some of our find-
ings for the linear cost case change when customers
incur nonlinear costs. Our analysis suggests that when
waiting costs are nondecreasing, quadratic, and con-
vex with respect to time, HSF performs very poorly
mainly because under HSF customers with low signals
end up waiting for a very long time, which is penal-
ized significantly under the convex cost structure. On
the other hand, the optimal two-class priority policy
performs surprisingly well under the nonlinear cost
structure considered. This shows that the optimal two-
class priority policy might be more robust than HSF
because its performance under the linear cost structure
is only slightly worse than that of HSF. However, the
“best” policy (among all considered) turns out to be
an extension of the generalized cp rule proposed by Van
Mieghem (1995), which outperforms all the other poli-
cies under the convex structure and reduces to HSF
when costs are linear.

The rest of the paper is organized as follows.
We first provide a review of the relevant literature
in §2 and continue with the model description in §3.
In 84, we characterize the structure of the optimal
priority policies with a finite number of classes and
show that the HSF policy outperforms any finite class
policy. We provide our results on two-class prior-
ity policies in §5. We compare the performances of
HSF and optimal two-class priority policies in §6.
Section 7 deals with the comparison of different sig-
nals, i.e., identifying characteristics of useful signals,
and §8 considers an alternative signal formulation
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that assumes that signals do not reveal customers’
type probabilities and investigates conditions under
which such signals can be used to determine customer
priorities. In §9, we report our findings based on a
simulation study of a system where customers” wait-
ing costs are convex in time. Finally, we provide our
concluding remarks in §10. Proofs of all our results
are presented in the appendix (online).

2. Review of Relevant Literature
Starting with Cobham (1954, 1955), priority queues
have received significant attention. For a single-server
queue with Poisson arrivals, where customers are clas-
sified into a finite number of priority classes and given
nonpreemptive priority accordingly, Cobham (1954,
1955) derived expressions for the expected waiting
times for each priority class. Many researchers fol-
lowed by analyzing priority queues in various set-
tings, and Cobham’s (1954, 1955) results have been
widely used in the literature, as we also do in this
paper. Jaiswal (1968) is a good source for a review of
early work on priority queues.

The optimality of the so-called “cu rule” for mul-
ticlass queues with Poisson arrivals appears to have
been first established by Cox and Smith (1961).
According to the cu rule, each customer class i has a
priority index calculated by c;u;, where ¢; is the per
unit time cost of keeping class i customers wait and
1/p; is the mean service time for class i customers,
and higher priority is given to customer classes with
higher priority indices. Other researchers have estab-
lished the optimality of the cu rule under various
conditions and analyzed its extensions for more com-
plex systems. Van Mieghem (1995) provides a review
of this work and also establishes the asymptotic opti-
mality of a generalized version of the cu rule in a
model where waiting costs are not necessarily lin-
ear but are convex in time. A number of papers
have considered models where customers possibly
differing in their delay sensitivities and utility func-
tions purchase priorities. For examples of such work,
see Kleinrock (1967), Balachandran (1972), Mendel-
son and Whang (1990), Rao and Petersen (1998), and
Afeche (2007), and for an extended review, see Hassin
and Haviv (2003).

The implicit assumption underlying the work that
deals with the cu rule and its various extensions is

that customers’ type identities are perfectly observ-
able. Not much has appeared on priority systems
when customers’ identities are not available. In fact,
to our knowledge, van der Zee and Theil (1961) is
the only such work. In their paper, van der Zee and
Theil (1961) consider a standard single-server queue
with two priority classes with the additional feature
that customers are possibly misclassified. They first
assume that the arrival rate of customers who are
supposed to be in class 1 but end up in class 2 and
the arrival rate of customers who are supposed to
be in class 2 but end up in class 1 are known, and
then determine a condition under which prioritizing
one of the classes is superior than the standard FCFS
policy. Then, they carry out an approximate analy-
sis (assuming very small misclassification rates) and
propose a classification policy. The authors also con-
sider a more general model where there are three pri-
ority classes, carry out another approximate analysis
for small values of misclassification rates, and based
on their analysis, propose that customers be classi-
fied to classes 1, 2, or 3, depending on the proba-
bility that an arriving customer should be classified
as class 1. Our paper is fundamentally different from
the work of van der Zee and Theil (1961). The main
difference is that in our model, the service provider
receives a signal from each arriving customer (where
the signal indicates the probability distribution of the
customer’s true class identity or more generally it rep-
resents the information available about the customer)
and assigns the customer a priority level, depending
on this signal. In the model of van der Zee and Theil
(1961), on the other hand, this priority assignment
process is not modeled at all. They implicitly assume
that the service provider classifies the customers in
some unspecified way and knows the associated mis-
classification probabilities. Explicit modeling of the
information about the customers allows us to gener-
ate various insights on the relationships between the
available information, different classification policies,
and improvements that would be obtained over the
standard FCFS policy. Furthermore, unlike our anal-
ysis, the approximate analysis of van der Zee and
Theil (1961) assumes very small misclassification rates
and ignores the fact that the arrival rate of misclas-
sified customers depends on the classification proce-
dure used. Although van der Zee and Theil (1961)
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suggest that similar analysis can be carried out if mis-
classification rates are large, they do not discuss how
the dependence between the classification policy and
error rates would be captured.

Within the general area of service operations, sev-
eral authors have investigated systems where cus-
tomers are classified into different groups, depending
on the information available about the customers and
their service requirements. The questions that these
authors pose and investigate are different from ours,
but our classification model shares some similarities
with theirs. Shumsky and Pinker (2003) are interested
in systems where a gatekeeper makes an initial diag-
nosis of each incoming customer and decides whether
to serve the customer herself or send him to a spe-
cialist. If the gatekeeper chooses to serve the customer
herself, she takes the risk of not serving the customer
satisfactorily, and as a result, incurring a cost. The
gatekeeper can rank the customers according to the
complexity of the service they require and she knows
that she can successfully serve a customer with a com-
plexity level k with probability f(k). (The complexity
information in this model is in some sense similar
to customer signals in our model, where each signal
corresponds to a certain probability that the customer
carrying the signal belongs to type 1.) Shumsky and
Pinker (2003) are interested in developing incentive
mechanisms that will induce the gatekeeper to act in
a way that is optimal for the overall system when
there is information asymmetry between the gate-
keeper and the firm. Although Shumsky and Pinker
(2003) do not model queueing effects explicitly, in a
related paper, Hasija et al. (2005) consider queueing
effects in a similar model, and investigate how opti-
mal referral rates change with system parameters.

Glines and Aksin (2004) use queueing-based models
to investigate value creation/service-delivery design
questions under congestion effects. In one of their
models, each customer is classified into one of two
types (high and low), depending on whether the prob-
ability that the customer will generate revenue when
offered a high-level service is above a certain level 6
or not. The server then further decides whether to
offer an extended or regular service to the customers,
depending on their type identities. Giines and Aksin
(2004) investigate how the server should determine
the type of service each customer type receives, and

how the manager should determine the value of § and
what kind of incentive mechanisms she should offer to
the server so as to maximize long-run average profits.

Service level differentiation in various forms have
received significant attention most recently within
the context of call centers. For some examples, other
than the above, see Gans and Zhou (2003, 2007) and
Gurvich et al. (2005). Also, see Aksin et al. (2007) for
a recent survey of work on call centers.

Finally, we would like to note that priority queues
have been previously used with the objective of prior-
itizing emergency calls, but with models that do not
consider the possibility of misclassification. For exam-
ples of such work, see Green (1984) and Schaack and
Larson (1986, 1989).

3. Model Description

We consider a service system, which can be modeled
as a single-server queue. Customers arrive according
to a Poisson process with rate A, and each customer is
either of type 1 with probability p; or type 2 with prob-
ability p, =1 — p; independently of other customers’
types, the arrival and service processes, and system
state. Service times of type i € {1,2} customers are
independent and identically distributed (i.i.d.) with
finite first and second moments given by a; and e,
respectively. We define p = A(p,a, + p,a,) to be the
system load (or customer load) and we assume that
p <1, so that the system is stable. We use h; to
denote the per unit time cost of having a type i cus-
tomer wait, and without loss of generality, we assume
that hy/a; > h,/a,. We also assume that the service
is nonpreemptive, i.e., once the service of a customer
begins, it cannot be interrupted. The performance
measure of interest is the long-run average expected
waiting cost.

The cu rule assumes that customer types are per-
fectly observable, and for the system described above,
the rule says that the optimal policy is to give prior-
ity to type 1 customers whenever there is at least one
such customer in the system at the end of a service.
In our model, however, types of customers are not
directly observable. Instead, the service provider has
some partial information about each customer, and
uses this information to determine the probability that
the customer belongs to type 1 (or equivalently the
probability that the customer belongs to type 2). We
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refer to this probability as the customer signal. Thus
the signal is an imperfect measure of the customer’s
“importance,” i.e., a probabilistic indicator of whether
the customer is of type 1 or 2, and can be com-
puted using historical data as well as specific infor-
mation about the customer. For example, call centers
can identify the purchasing habits of their premium
(“valuable”) customers based on historical data, and
can use this information along with the available data
on each individual customer to determine the prob-
ability that the customer is a premium customer or
not. One common method that can be used to esti-
mate the probability of a customer’s type identity is
logistic regression (see, e.g., Hosmer and Lemeshow
2000 and Hastie et al. 2001).

For each arriving customer, the signal, i.e., the prob-
ability that the customer belongs to type 1, is a random
variable and we assume that it is i.i.d. for all customers
with a probability density function b(-) and a strictly
increasing cumulative distribution function B(-). Note
that B(-) is the probability distribution of the probabil-
ity of an arbitrary customer belonging to type 1, and
thus B(x) is the probability that an arriving customer
has less than 100x percent chance of being type 1. By
definition, we also have

p = fo 1 xb(x)dx and p,= fo 1(1 —x)b(x) dx.

The signal distribution B(-) can be estimated by tak-
ing a random sample of customers and fitting a dis-
tribution to the estimated type 1 probabilities of these
customers. Alternatively, one can first estimate the
probability distributions of the covariates in the logis-
tic regression (which is used to estimate type 1 prob-
abilities), which can, in turn, be used to estimate the
probability distribution of the signal.

In §§4-7, we use the model described above to ob-
tain insights on “good” priority policies and also sig-
nals that yield the smallest long-run average cost.
Later in §§8 and 9, we relax the assumption of avail-
ability of the distribution of probability of being a
type 1 customer and the assumption of linear waiting
costs, respectively.

4. Grouping Customers into Priority
Classes and the HSF Policy

Consider a policy that prioritizes customers so that

customers with higher signals have priority over cus-

tomers with lower signals. In other words, whenever
the server is available, the server picks the customer
with the highest signal among those waiting for ser-
vice. We call this policy the HSF policy. The HSF
policy is in some sense a generalization of the cu
rule because giving higher priority to customers with
higher signals is actually the same as giving higher
priority to customers with higher “expected cu” val-
ues, because using our notation, the expected cu
value for a customer with signal x equals x(h,/a;) +
(1 —x)(h,/a,), which increases with x.! It is thus rea-
sonable to expect HSF to perform well. Indeed, as
we demonstrate in this section, HSF outperforms all
finite class priority policies. Toward that end, we first
give a precise description of finite class policies, prove
some structural properties of optimal finite-class poli-
cies, and investigate how the performances of these
policies change as the number of classes increases.
An N-class priority policy 7 (where 1 < N < o0) can
be characterized by a partitioning of the interval [0, 1]
into N subintervals Ij,w je{l,..., N} (The case with
N =1 corresponds to the FCFS policy.) To be more
precise, an N-class priority policy = can be described
by a set of signal sets {I; ., L ,,..., Iy, »}, where [; . C
[0,1] forje(1,2,... N, [ . NI , = forany j, ke
{1,2,...,N}, j#k; U;il L .= [0, 1]; and where cus-
tomers whose signals belong to set I,

i, » are put into

priority class j and have higher priority than cus-
tomers from any class k > j. Let I, denote the class
of all such policies for fixed N. Let also W, . denote
the steady-state expected queueing time of customers
in priority class j under policy 7 € Il. Then, using
results on nonpreemptive priority queues (see, e.g.,
Cobham 1954 or Wolff 1989, §10.2), we have

_ ‘)\(P161+P262) .
21-AY T ) A=A L L)
forj:l,z,...,N, (1)

W.

I

! The reader can check that HSF is equivalent to implementing the
expected cu rule also by computing the expected cu values after
computing the expected cost and expected service time individu-
ally. This gives (xh; + (1 —x)h,)/(xa, + (1 —x)a,) as the index value
of a customer with a signal of x.
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where T}, | = flk (xa; + (1 — x)ay)b(x)dx for k=1,
..., N. Now, define C, to be the long-run average cost
under policy 7 € Ily. Then

N
C,=AY. W, , /1 (hyx + hy(1 = x))b(x) dx. ()

k=1

Using (1) and (2), we next obtain a result that
partially characterizes an optimal policy within II.
(The proofs of all our results are provided in the
appendix online.) First, define Ty to be the set of
policies for which there exists a sequence of N +1
real numbers t, > t; > t, > --- > ty_; > ty such that
L,=1[tt] L. =1t t) for j=2,... N, t, =1,
and ty = 0. Note that TI, c ITy and each policy in I,
is completely characterized by N — 1 “thresholds,”

ie, b, by, by g

THEOREM 1. For fixed N > 2, there exists a policy m* in
Tl that provides the smallest long-run average cost among
all policies in Ily. In other words, there exists an optimal
policy in Ily for which signal interval [0, 1] is partitioned
into N disjoint intervals by N — 1 threshold values, so
that customers whose signals fall into intervals with higher
signals have higher priority than customers whose signals
fall into intervals with lower signals.

Theorem 1 simplifies the search for an optimal
policy because it gives a characterization of a class
of policies (i.e., ﬁN), which contains at least one opti-
mal policy (if not the only one) and is much smaller
than II. The theorem says that it is sufficient to search
for optimal values of N —1 thresholds that will sepa-
rate the signal interval for one priority level from that
of the next priority level.

Next, we investigate the effects of increasing the
number of classes on the long-run average cost.

THEOREM 2. Let 7 be any N-class policy in Tl char-
acterized by thresholds t,,t,, ..., ty_q. Also, let 7 be an
(N + 1)-class policy in Ty, obtained from m by parti-
tioning one of its class intervals [t,,, t,_) into two sub-
intervals [t,,t) and [t,t,_,), where t € (t,,t, ) and
m=1,2,...,N such that customers with signals in
[£, t,_1) receive a higher priority than those with signals
in [t,,, t), while all other priority relations remain the same
as in . Then, the long-run average cost under 7 is at most
the same as that under .

CoroLLARY 1. For every N-class priority policy in Il
(where N > 1), there exists an (N + 1)-class priority policy
in ., under which the long-run average cost is at most
the same.

COROLLARY 2. The long-run average cost under any
N-class priority policy in Ily for N > 2 is at most the same
as that under the FCFS policy.

Theorem 2 says that any N-class priority policy
in [T can be improved by adding a new class by arbi-
trarily partitioning the signal interval corresponding
to any one of the classes into two, and thereby creat-
ing an (N + 1)-class policy (while still enforcing that
customers whose signals fall into intervals with higher
signals have higher priorities). Note that the theorem
does not say that any (N + 1)-class policy is better
than any N-class policy, which is not correct even if
the policies are restricted to be in policy sets Tl
and IT, respectively. However, as Corollary 1 directly
implies, the optimal (N + 1)-class policy is better than
the optimal N-class policy. We also know that any
N-class policy in Tl is better than FCFS as stated
in Corollary 2.

Now, consider the HSF policy. This policy can,
in fact, also be considered as a priority policy with
infinite number of classes because each customer
can be seen as belonging to a different class. Corol-
lary 1 says that any finite class priority policy can
be improved by adding another class, and Theorem 1
says that customers with lower signals should not
have higher priorities than those with higher signals.
These two findings lead to the following result, which
is formally proven in the appendix online.

Tueorem 3. The long-run average cost under the non-
preemptive policy that gives higher priority to customers
with higher signals (i.e., the HSF policy) is at most as large
as the long-run average cost under any finite class priority
policy.

Findings of this section suggest the following:
When waiting costs change linearly in time, use HSF
preferably, if not, offer as many priority classes as
possible. Note, however, that these findings ignore
the “cost” associated with implementing different pri-
ority policies. One can imagine that implementation
of a priority policy can become more difficult as the
number of priority classes increases, and thus the
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benefits of having additional priority classes might
not be sufficient to overcome the additional “costs.”
(Our numerical analysis in §6 also strongly supports
this claim.) Thus, in many service systems, the num-
ber of priority classes is not too large. For exam-
ple, in patient triage, while different triage systems
have different numbers of priority classes, this num-
ber typically does not exceed six. In the following
section, we focus on two-class priority policies. Rela-
tively simpler structure of this class of policies allows
us to give a complete characterization of the opti-
mal policy and derive insights regarding the relation-
ships between the optimal policy and certain system
parameters.

5. Priority Policies with Two Classes
Suppose that the service provider is employing a two-
class priority policy. Then, we know from Theorem 1
that there exists an optimal policy that is completely
characterized by a single-threshold value ¢t € [0, 1].
Those with signals ¢ or above are classified as class 1,
while those with signals below t are classified as
class 2 and class 1 customers have nonpreemptive pri-
ority over class 2 customers.

Define ;(t) to be the expected waiting time of
class i customers under threshold t. Then, from (1),
we have

W, () = . A(pie; +p,ey) 3)
2(1 = A f, (ayx + a,(1 — x))b(x) dx)
and W (1)
W) =12 “)
p

Let C(t) denote the long-run average cost when the
threshold level is set to t € [0, 1]. Then, we have

C(t) = AW, (1) / N+ (1 — )b (x) d
AW (H) /0 (hx+ (1 — )b dx.  (5)

Our objective is to minimize C(t) with respect to the
threshold t. (Note that when t = 1, there are no class 1
customers, and therefore no customer experiences (3)
as the expected waiting time and similarly when ¢t =0,
there are no class 2 customers and as a result no cus-
tomer experiences (4) as the expected waiting time.)

We next show that C(t) is a unimodal function of ¢
and provide an expression for the optimal threshold
value using the first-order condition. We first define

E(t) = /t ' 2b(z) dz )

and )
E(h) = / (1—2)b(z)dz for t e [0, 1]. 7)

ProrosiTiON 1. Let t* be the unique solution to
g(p, t*) =0, where

8(p, 1) =t(py— pE(t) — (1= D) (p — pE()).  (8)

Then, t* is the unique optimal threshold that mini-
mizes C(-).

Proposition 1 provides several insights on the opti-
mal threshold #*. Given the assumption that h;/a; >
hy/a,, t* is independent of h; and h,. In other words,
the optimal threshold does not depend on how much
more “costly” it is to keep higher priority customers
waiting. On the other hand, if h,/a; < h,/a,, this
implies that priority is not given to the right cus-
tomers. In that case, t* as defined in Proposition 1
maximizes (5). Another interesting observation is that
the optimal threshold depends on customer arrival
rate A and mean service times a4, and a, through the
system load p only. Furthermore, higher moments of
service times have absolutely no effect on the optimal
threshold t*.

We next investigate the effect of the system load
on t*.

ProrosITION 2. Fix p, € [0,1]. Then, the optimal
threshold t* decreases as the system load p increases. Fur-
thermore, t* converges to p, as the system load p approaches
to 0, and t* converges to O as the system load p ap-
proaches to 1.

Proposition 2 states that as the system load in-
creases, the optimal decision calls for classifying a
higher percentage of customers as class 1. Also, in the
limit, as p converges to 1, t* converges to 0. There-
fore, under heavy traffic, policies that classify a small
percentage of customers as class 2 are more desirable.
On the other hand, as p converges to 0, t* converges
to p; meaning that t* < p; (or equivalently 1 —t* > p,)
for any p > 0. Thus, for any level of customer load, for



o~
&, 1
p—

o
23
=

5 E
© o
RSl
o c
=
©
2
=
@2
23
> 2
O +
o <
=
@ ©
nQ
i
b
58
O ®©
2
£y
32
=
.-QQ-
= C
@ 9
S 3
o2
2 E
T O
o2
o2
T ©
T
1]
0 £
c .2
e

o
==
— O
£ 3

O O
= £
E -
c
[e]
8 e
S =
o O
<E
w_
©
= C
e o
=
Q35
Z-c
=<

Argon and Ziya: Priority Assignment Under Imperfect Information on Customer Type Identities
682 Manufacturing & Service Operations Management 11(4), pp. 674-693, ©2009 INFORMS

a customer to be classified as class 2 under the optimal
classification policy, the probability of that customer
being of type 2 has to be larger than the fraction of
type 2 customers in the whole customer population.

Although Proposition 2 may seem surprising at
first, it has an intuitive explanation. As the customer
load increases, all customers experience longer wait-
ing times, but this is especially the case for those
customers who are in class 2. With increasing load,
the “cost” of a misclassified type 1 customer becomes
even higher. However, if the threshold is set at a
very low level, and thus the probability of a customer
being classified as class 2 is very small, even though
customers will still experience longer waiting times
with increasing load, it is very unlikely that a type 1
customer will have to bear a significantly longer wait-
ing time because of misclassification, as only those
customers who are very likely to be of type 2 are clas-
sified as class 2. Thus, with increasing customer load,
the policies that classify fewer customers as class 2
become increasingly more preferable.

Next, we provide a lower bound on the magnitude
of improvement brought by the optimal two-class
policy over the FCFS policy. We then use this lower
bound to identify conditions under which the opti-
mal two-class priority policy does not bring signifi-
cant benefits.

ProrosiTioN 3. We have
pa(t* /(1 = t*))hy +pyh, < C(t) -
pihy +pahy

where Cyeypg is the long-run average cost under the FCFS
policy and equals C(0).

1,

CFCFS

CoOROLLARY 3. When either p converges to 0 while p; is
fixed or p; converges to O while p is fixed, the fraction
C(t*)/Cycrs approaches to 1.

Corollary 3 implies that for low values of the sys-
tem load, benefits from the priority policy will be
very small. This is intuitive because when the system
load is low, customers’” queueing time will be low as
well regardless of their priority level. Hence there is
not much to gain from giving priorities. Corollary 3
also suggests that the benefit of the priority system
is insignificant when the fraction of type 2 customers
is much higher than that of type 1 customers. In the
following section, we give a more detailed discussion

on the benefits of using priority policies by means of
a numerical analysis.

6. A Numerical Study on the
Performance of HSF and

Two-Class Priority Policies

As we have established in §4, increasing the number of
priority classes increases the performance of the opti-
mal priority policy. We do not know, however, how
much improvement is possible and how it depends on
system characteristics such as the customer load and
ratio of types 1 and 2 customers. The objective of this
section is to shed some light on these questions by
reporting our findings based on a numerical study.

We first obtain an expression for Cyge, which de-
notes the long-run average cost under the HSF policy.

1
Crrsr = A /0 (hyx + Iy (1 — X)) W (x)b(x) dx,

where W(x) is the steady-state expected queueing
time of a customer with signal x under the HSF rule.
In the following proposition, we obtain an expres-
sion for W(x). Proposition 4 generalizes Theorem 1
of Kleinrock (1967), which provides an expression for
W (x) when there is a single customer type.?

ProrosITION 4. Under the HSF rule, the expected wait-
ing time for a customer with signal x € [0, 1] is given by

W(x) = T 2pser £ pots) 2
2(1 = A [, (ya + (1= y)ay)b(y) dy)

In our numerical study, we considered various sce-
narios by assigning different values for system param-
eters such as hy, h,, a;, a,, and A. We observed some
common characteristics that these different scenarios
exhibited. Here, we report these observations over a
representative example. For this example, the holding
cost rates are given by h; =4 and h, =1, service times
are exponentially distributed for both types with the

2 Kleinrock (1967) is interested in optimal bribing for queueing posi-
tion in a single-server queue. He assumes that there is a probability
distribution for customer bribes, and he derives an expression for
the steady-state expected waiting time of a customer with a bribe
of x. Bribes in his model can be seen as signals in ours, however,
he assumes that service times are independent of customer bribes,
which does not hold for the signals in our model.
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Figure 1 Percentage Improvement Over FCFS Under HSF and Optimal Two-Class Priority Policies for Different Levels of Customer Load
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same mean of one unit, and signals are uniformly dis-
tributed over the interval [p, —0.2, p; +0.2].

We first observe the effect of changes in the cus-
tomer load. To isolate the effects of the customer
load, we fix p;, the ratio of type 1 customers to all
customers, to one of {0.2,0.4,0.6,0.8}, in turn, and
for each fixed ratio, we let A (and equivalently traf-
fic load p) change from 0.01 to 0.99. Figure 1 shows
the percentage improvement in costs that would be
obtained using HSF and the optimal two-class priority
policies over the standard FCFS policy.

We observe that under both priority policies, im-
provements in cost increase with customer load.
In particular, regardless of the value of p;, the percent-
age improvement appears to be an increasing convex
function of customer load p, which takes substantially
large values under heavy customer load. This find-
ing may sound contradictory to Proposition 2, which
states that as the system load p approaches to 1,
t* converges to 0, implying that the optimal two-class
priority policy becomes similar to the FCFS policy.
Note, however, that even under a small threshold
level, the priority policy will classify those customers
who have a very high chance of being type 2 as
class 2, and thereby reduce the waiting time of type 1

—

oad

Customer

customers, which will result in substantial savings in
a setting where the waiting times are already very
large because of heavy customer load.

Figure 1 is also insightful about how the perfor-
mance of the optimal two-class priority policy com-
pares to that of the HSF policy. Because we know
that HSF outperforms any finite class priority policy,
its performance constitutes an upper bound on the
performance of any finite class priority policy for a
given signal distribution. Interestingly, for almost all
levels of customer load, we observe that the optimal
two-class priority policy captures most of the poten-
tial improvement in costs. This suggests that classify-
ing customers into two priority classes can be a quite
satisfactory alternative if keeping a strict ordering of
the customers with respect to their signals or using a
finite class priority policy with more than two classes
is impractical or costly. The performances of HSF and
the optimal two-class priority policies appear to be
especially close when the customer load is either light
or very heavy. Relatively speaking, the advantage of
using HSF over the two-class priority policy is more
significant for mid to high levels of customer load.

Next, we investigate the effect of the customer mix
(more specifically the fraction of type 1 customers, p,)
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Figure 2 Percentage Improvement Over FCFS Under HSF and Optimal Two-Class Priority Policies for Different Levels of Type 1 Customer Fraction
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on the percentage improvement over the FCFS pol-
icy. This time, to isolate the effects of changes in the
customer mix, we fix the arrival rate (and thus cus-
tomer load p) to one of {0.1,0.3, 0.7, 0.9}, in turn, and
for each fixed load, we let p; change from 0.2 to 0.8.
Note that because we assume that the signal distribu-
tion is uniform over [p; — 0.2, p; + 0.2], the variance
of the signal does not change as we change p;. This is
important to isolate the effect of change in the fraction
of type 1 customers, because as we later discuss in §7,
the effectiveness of a signal is closely related with its
variability.

Figure 2 shows the percentage improvement in costs
that would be obtained using HSF and the optimal
two-class priority policies over the standard FCFS pol-
icy. For all values of customer load p, the behavior
of percentage improvement with respect to the frac-
tion of type 1 customers appears to have a convex
decreasing shape with more substantial improvements
when the fraction of type 1 customers is smaller. This
observation makes intuitive sense. When type 1 cus-
tomers constitute a significantly large percentage of all
the customers, because type 1 customers are mostly
inconvenienced by other type 1 customers anyway,
the improvements brought by the priority policies are
relatively small. However, if type 1 customers are in

p=09

——— HSF

25 = = = 2class

Percentage of
improvement over FCFS

OM\DO\NWDO'—'gl\OM\OO\NWOO—'ﬁ’[\O

Sadddonmo@aIILTnRninhoeonnn®
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Fraction of type 1 customers

minority, they are mostly kept waiting by type 2 cus-
tomers under the FCFS policy, and thus identifying
these type 1 customers (to the extent that is possible)
and giving them higher priority brings more signifi-
cant benefits. Note that there are examples that show
that this insight is no longer true if the variance of
the signal changes with the fraction of type 1 cus-
tomers (unlike in our experimental setting where the
variance is fixed at 1/75). Indeed, Corollary 1 states
that the improvements brought by priority policies
become insignificant as the fraction of type 1 cus-
tomers approaches zero. This is not contradicting the
numerical results that we present here, because the
fact that p; approaches zero implies that the variance
also approaches zero (because the second moment of
the signal is always less than or equal to p;) unlike the
case in our numerical results.

7. Comparison of Signals

By using different pieces of the customer data avail-
able or processing the same data differently, the serv-
ice provider can develop different ways of coming up
with a signal, i.e., the probability that a given customer
is of type 1. In other words, there can be more than one
type of signal available for determining priorities of
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customers. Then, an interesting question is which one
of these signals would lead to the smallest long-run
average cost.

To be more precise, suppose that we would like
to compare two signals, signal Y and signal Z, with
cumulative distribution functions By (-) and B,(-), and
probability density functions by(-) and b,(-), respec-
tively. These two signal distributions are related by
the fact that they have the common mean p;; ie.,

1

P1 =/O xby (x) dx=f01xbz(x) dx.

Thus we assume that both signals correctly estimate
the true proportion of type 1 customers, and there-
fore it is fair to determine which signal is better by
comparing the associated long-run average costs.

We first make this comparison for a service provider
that employs a two-class priority policy in TI,. Define
Ey(:) and E;(-) as in (6), but for signals Y and Z, respec-
tively. Similarly, define E,(-) and E,(:) as in (7), but
for signals Y and Z, respectively. Let C;(t;) denote the
long-run average cost when threshold ¢; is used for
signal i, where i € {Y, Z}. Then, we can show that (see
Appendix C online)

Cy(ty) = Cy(t,)

_ X (pres+pye0) (ay —hyay)v(ty, t7)

B 2(1—p)(1=A(a,Ey (ty) +aEy (1)) (1= A(a, E5 () + 8, E, (1)) ’
(10)

where
v(ty, tz) = (P, — PEy(ty))(EZ(tz) —Ey(ty))
(- pEY(tY))(E_Z(tZ) - Ey(ty))~ (11)

Since hy/a; > h,/a,, the sign of Cy(t,) — C,(t;) is
determined by the sign of v(ty, t;). Hence, signal Y
(when applied with threshold ty) is better than sig-
nal Z (when applied with threshold t,) if and only
if v(ty, t;) < 0. Now, suppose that we would like to
compare the performances when threshold values t,
and t, are set optimally. Let # and ¢} denote the corre-
sponding optimal values. Then, from (11) and Propo-
sition 1, after some algebra, we obtain

(P — PEy (89)) (p1 — pEZ(£2)) (5, — £7)

ptyt; '
which implies that v(t}, t3) <0 (and thus signal Y is
better than signal Z) if and only if t} < t}. We can thus
conclude the following.

v(ty, t7) =

THEOREM 4. Suppose that the service provider decides
to implement the optimal two-class priority policy m € T1,,
which is characterized by a single-threshold value. Then,
among all available signals, the one under which the opti-
mal value of the threshold is the smallest provides the
smallest long-run average cost.

Theorem 4 provides an easy-to-use procedure for
determining which signal to pick among a finite set
of alternatives: Calculate the optimal threshold value
for each alternative first and then use the signal under
which the optimal threshold is the smallest. Theo-
rem 4 is also useful in obtaining insights on the char-
acteristics of “good” signals. In particular, we can
identify conditions on signals under which the corre-
sponding optimal threshold values are guaranteed to
be ordered. The following proposition gives one such
condition. (See Appendix A online for a definition of
convex ordering.)

ProOPOSITION 5. Suppose that signal Y is larger than
signal Z in the convex order; i.e., By >. B,. Then, the
optimal threshold for signal Y is smaller than the optimal
threshold for signal Z, i.e., t, < t3,. Consequently, the mini-
mum long-run average cost under signal Y is smaller than
the minimum long-run average cost under signal Z when
a two-class priority policy is applied.

Proposition 5 says that the long-run average cost is
smaller for signals that are larger in the sense of con-
vex ordering. Note that because we are also assum-
ing that the expected values of the signals are the
same, assuming convex ordering is, in fact, equiva-
lent to assuming increasing convex ordering (see The-
orem 1.5.3 of Miiller and Stoyan 2002), which is easier
to verify than convex ordering.

Proposition 5 does not only give us a technical con-
dition to compare signals, but also provides some
general insights because convex ordering is, in fact,
closely related to the “variability” or “dispersion”
of random variables. In particular, random variables
that are larger in convex order have larger variances
(see Corollary 1.5.4 of Miiller and Stoyan 2002). Thus,
Proposition 5 points to a close relationship between
the variability of the signal and its usefulness, which
makes intuitive sense. If a signal distribution is not
spread out, then that signal may not be very help-
ful. For example, consider the extreme case where the
signal is deterministic, which means that all arriving
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customers have the same probability of being type 1.
In such a case, there is no basis to differentiate the
customers, and thus the signal is not helpful. On the
other hand, if the signal distribution is well spread,
then customer signals provide useful information.
In the extreme case, for example, type 1 customers will
give signal 1, and type 2 customers will give signal 0,
which leads to a priority policy in which customers
are perfectly classified according to their types.

Note that convex ordering is one of the weakest
univariate variability orders. In particular, it is weaker
than the excess wealth ordering and dispersive order-
ing (see Equations (3.C.8) and (3.C.9) in Shaked and
Shanthikumar 2007). However, it is stronger than the
ordering of variances, and therefore it is of interest to
investigate whether a variance order without the con-
vex ordering would be sufficient to rank alternative
signals. Although, in general, it might be reasonable
to believe that signals with higher variances will tend
to be more useful, there are examples that show that
this is not always the case (see Appendix C online).

Based on Theorem 4 and Proposition 5, it is rea-
sonable to conjecture that when the service provider
uses signals that are larger in the convex order, the
long-run average cost will be smaller not only for two-
class priority systems but also for systems with more
than two priority classes. While our numerical analy-
sis on the HSF policy supported this conjecture, prov-
ing it appears to be quite challenging. Similarly, as in
the case of two-class priority policies, we found that
higher variance does not necessarily imply that long-
run average cost under the HSF policy will be smaller,
but for many cases, we observed that long-run average
cost is smaller with signals that have larger variance.
We next discuss this numerical analysis in more detail.

For our numerical analysis, we assumed that h; =4,
h,=1, A=08, a,=a,=1, and e; = e, =2. We
set p; to one of the four different values from the
set {0.2,0.4,0.6,0.8}. For each fixed value of p,, we
identified a number of probability distributions, each
defined over a subset of the interval [0, 1] with a
mean of p; but with a different variance. We then
computed the long-run average cost under each dis-
tribution. To cover a wide range of variance values for
each fixed value of p;, we considered four different
families of distributions. For example, Family 1 is the
set of distributions that are uniform over the interval

[p1 —s, p1 +5], where 0 < s <min(p;, 1 —p;) and distri-
butions from this family are obtained by choosing dif-
ferent values of s. Other families of distributions are
obtained by modifying Family 1 in various ways so as
to obtain different variance values for each fixed value
of p;. All these distributions are uniform restricted to
certain intervals but with possibly different uniform
rates for different intervals. (A complete description
of these different families of distributions are given
in Appendix C online.) For each fixed value of p,,
Figure 3 gives a scatter plot of the long-run average
cost under the HSF policy with respect to the signal
variance, where each variance value corresponds to a
different distribution. (Note that, in Figure 3, there are
four types of markers each corresponding to a differ-
ent family. Observations made for signal distributions
from the same family are indicated by the same type
of marker.) As it can be seen from Figure 3, overall the
long-run average cost tends to decrease as variance
increases, but there are some exceptions. For example,
in the lower left plot, where p; = 0.6, one can see that
the distribution corresponding to the left-most cross
(x) marker has a smaller variance than the distribu-
tion corresponding to the right-most triangle marker,
but the long-run average cost under the former dis-
tribution is lower than that under the latter. One can
check to see that convex order does not hold for any
of such exceptions, and therefore none of them dis-
proves our conjecture.

8. An Alternative Signal Formulation:
When Signals Do Not Reveal
Type Probabilities

So far in this paper, we have assumed that each cus-
tomer’s signal is equal to that customer’s probability
of being type 1. In this section, we consider the possi-
bility that customer signals are less informative. Our
objective is to identify conditions under which these
less informative signals are still useful and describe
how they can be used to assign priorities.

We first change our signal formulation in a way that
will allow us to “weaken” the signals that we have
taken to be type 1 probabilities. Suppose now that each
customer’s signal is a quantified summary of the rel-
evant information that the service provider has about
the customer. More precisely, it is an imperfect mea-

7oy

sure of the customers” “importance,” i.e., an imperfect
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Figure 3 Scatter Plot of the Long-Run Average Cost with Respect to the Signal Variance
p; =02 75 p; =04
- gi Z 7.0
Z 5.
49 & 63
g’ 47 § 6.0
3] <
5 j’i s 55
= ™ =
g 41 & 5.0
o0
23 Mg o~ RN g s
S 3
3.5+ . . . . . . . : 4.0+ . . . . .
0 002 004 006 008 010 012 0.14 0.16 0 0.05 0.10 0.15 0.20 0.25
Variance Variance
9.0 Pl =06 115 pl =08
- & 110
w
8 S 105
Q 5]
% 2 10.0
12 L 95
< <
s S 90
2 2 g5
g 2 80
Q Q
= = 75
7.0+

0 0.05 0.10 0.15 0.20 0.25

Variance

indicator of whether the customer is of type 1 or 2. For
example, in patient triage, the signal can be a critical-
ity score computed based on the patients’ condition
(similar to the way the CRAMS scale and other exist-
ing triage scores are computed), while for call centers,
it can be any information about the customers that is
believed to be a good indicator of the customer’s value
to the firm (e.g., total purchases within the last year).
Specifically, we assume that signals from type i
customers are ii.d. with a cumulative distribution
function F(-) that has a finite mean and a differen-
tiable probability density function f;(-). Distributions
F(-) and E(:) have the same support & = [c, d] (or
[c, d) if d =o0), where ¢ < d. Therefore, given the sig-
nal of a customer, the service provider does not know
with certainty whether the customer is type 1 or 2.
Suppose for now that the service provider knows
the distributions F, and F,.. Then, given the customer
signal, the service provider can actually compute the
probability that the customer is of type 1. Let p;(x)
denote the probability that a customer belongs to type i
given that the customer’s signal is x. Then, we have

pifi(x)

pi(X)=m for i=1,2, (12)

0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
Variance

where p; is the unconditional probability that a ran-
dom customer belongs to type i. So, if the signal dis-
tributions are known, the service provider can simply
transform the existing signal x via (12), obtain p; (x),
and then use the policies prescribed in the previous
sections.

Now, what if the service provider does not have
complete information on the signal distributions F
and F,? What if the service provider only knows (or at
least conjectures) that there is some stochastic relation-
ship between the signals of type 1 customers and sig-
nals of type 2 customers? For example, it is known
that past expenditures of a customer at a firm might
be a good predictor of the customer’s future value
(see, e.g., Reinartz and Kumar 2003). Specifically, sup-
pose that there is a firm, which has a reason to believe
that its valuable customers of the future spend more
than the other customers in the near past in some
stochastic sense, and the firm wants to use the past
spending amounts of the customers (e.g., the amounts
spent in the last three months) to determine whether
each customer should receive a premium service or
not. The firm may not be able to compute the prob-
ability that each customer is of type 1 (given his or
her spending amount within the last three months)
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because that requires the complete distribution of the
customer expenditure for each type. But, as we dis-
cuss below, even without such detailed information,
the firm can still use past expenditures to assign pri-
orities as long as certain stochastic ordering relations
hold.

First, suppose that F is larger than F, in likelihood
ratio ordering. (See Appendix A online for defini-
tions of stochastic orders that are used in this section.)
The likelihood ratio ordering is a strong stochastic
order that implies hazard rate ordering, which, in turn,
implies usual stochastic ordering (see, e.g., Miiller and
Stoyan 2002). In the following proposition, we show
that higher signals imply higher probabilities of being
type 1 under the assumption of likelihood ratio orders.

PROPOSITION 6. p,(x) is nondecreasing in x if and
only if signals from type 1 customers are larger than sig-
nals from type 2 customers in likelihood ratio ordering;
ie, F>,F.

Proposition 6 implies that when there is likelihood
ratio ordering between the signal distributions, order-
ing customers according to their signals is equivalent
to ordering them according to their probabilities of
being type 1. Therefore, results of §4 continue to hold
for this alternative signal formulation. For example,
the HSF policy, i.e., the policy that orders customers
according to their signals, still outperforms all finite
class priority policies.

Proposition 6 also implies that if there is no like-
lihood ratio ordering between signals but a weaker
stochastic order, such as hazard rate ordering, then
ordering customers according to their signals is not
necessarily equivalent to ordering them according to
their probabilities of being type 1. Hence, in that case,
the HSF policy (where signals are as defined in this
section) is no longer guaranteed to be better than all
finite class priority policies. However, the fact that the
HSF policy is no longer better than other policies does
not necessarily mean that the service provider should
avoid using it. If the firm does not know which pol-
icy outperforms HSF (as it is the case in the absence
of complete information on F, and E), it can still be
perfectly acceptable as long as it at least improves on
FCFS. To see whether that would be the case, we first
obtain expressions for Cygr and Cpepg, which denote
the long-run average costs under the HSF and FCFS

policies, respectively. If customers are served in an
FCEFS fashion, the resulting queueing system is a stan-
dard M/G/1 queue, for which the expected waiting
time Weepg is known to be

_ A(pre; +pre,)
WFCFS - 2(1 _ p) . (13)
Then, it follows that
Crcrs = AMp1hy + P2hy) Weers- (14)

For the HSF policy, on the other hand, we obtain
d
Chisr = )\P1h1fc W (x) f (x) dx

d
taph [ W@fh@dx,  (15)

where W(x) denotes the steady-state expected queue-
ing time of a customer with signal x under the HSF
rule and as in the proof of Proposition 4, we can show
that (see Appendix B online for the derivation)

A(pie; +p,er) .
2(1 = p+ Apya, K (x) + Ap,a, B (x))?

W(x) = (16)

Now that we have expressions for the long-run
average cost of HSF and FCEFS policies, we can com-
pare these two costs to determine conditions under
which the service provider should give priorities to the
customers with higher signals rather than employing
the FCFS discipline. It turns out that the usual stochas-
tic ordering between signal distributions is, in fact,
sufficient.

PROPOSITION 7. Suppose that signals from type 1 cus-
tomers are stochastically larger than signals from type 2
customers; i.e., F; >4 F,. Then, the long-run average cost
under a policy that gives higher priority to customers with
higher signals is at most the same as the long-run average
cost under the FCES policy; i.e., Cygp < Crers-

In a way, Proposition 7 describes what would be
an acceptable signal to use when determining priori-
ties. The service provider might use different portions
of the information about the customers or process
the information differently and come up with alter-
native ways of obtaining customer signals that can
be used in determining priorities. Proposition 7 sug-
gests that no matter what piece of information is used
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or how the signal is obtained from this information,
in the end, if signals coming from type 1 customers
dominate signals coming from type 2 customers in the
sense of usual stochastic orders, then this will ensure
that HSF outperforms FCFS. Note that (16) can be
generalized to the case where there are more than
two customer types. Also, Proposition 7 continues to
hold, as long as customer types 1,2,..., M can be
numbered such that f, > F, >, --- >, F, and h;/a; >
hy/ay, > --->hy,/a,, where M denotes the number of
customer types.

If the service provider prefers using a finite class
priority policy with N > 2 classes (as in §5), then it
turns out that under the usual stochastic ordering
condition, it is also easy to determine a policy that
performs better than FCFS.

ProrosiTiON 8. Consider an N-class priority policy
@ under which the signal support [c, d] is divided into
N nonoverlapping and exhaustive intervals by a set of
N —1 thresholds T ={t,, t,, ..., ty_q} such that d = t, >
t >ty > >ty > c =ty, and customers whose signals
fall into interval [t;, t;_i] are assigned to priority class i,
where class i jobs have higher priority than class j jobs
for all j > i. Let ®y be the class of all such policies for
N >2and let C,_be the long-run average cost under pol-
icy mp € Oy If R >4 B, then C, < Cpcps for any policy
T € Oy.

According to Proposition 8, if there is usual stochas-
tic ordering between signal distributions, the service
provider simply needs to pick N —1 threshold values,
which will determine the N signal intervals for N pri-
ority classes, and give priority to customers whose
signals fall into intervals with higher signals. No mat-
ter how these threshold values are picked, this policy
improves on FCFS.

9. Nonlinear Waiting Costs

So far, we assumed that customers’ waiting costs are
linear in time. However, approximating customers’
delay sensitivities with a linear function may not
always be reasonable, and thus it is of interest to
investigate whether or not (and how) our main
findings change if customers experience nonlinear
waiting costs. When customers incur nonlinear wait-
ing costs, the analysis becomes significantly more dif-
ficult. For finite class priority policies, expressions for

any moment of steady-state waiting times are known
(see, e.g., Lu and Squillante 2004), and thus it is pos-
sible to come up with an expression for the long-run
average cost if the waiting cost function is a polyno-
mial. However, even if the cost function is simply /,z?
for customer type i (where /; is a constant and z is the
time spent in the queue) and we are interested in two-
class priority policies, the long-run average cost is not
a unimodal function of the threshold and it is not pos-
sible to obtain an expression for the optimal threshold.
More research is needed to develop a better under-
standing of how the optimal threshold changes with
various system parameters, but it is not difficult to
come up with examples where the optimal threshold
is not monotone in the traffic load p, and thus Proposi-
tion 2 does not generalize to systems where customers’
waiting costs are nonlinear. Under HSF, the analysis
is much more difficult mainly because it appears to
be a significant challenge to derive expressions for
higher moments of customers’ steady-state waiting
times. Nevertheless, simulation is viable, and therefore
we carried out a simulation study to get insights into
the performances of various policies when customers
incur nonlinear waiting costs.

In our simulation study, we assumed that waiting
cost for a type i customer with a waiting time of z
is given by H;(z) = h;z*>, where h; is a constant and
z is the time the customer spends in the queue. We
studied a total of 18 scenarios generated by all com-
binations of A € {0.3,0.7,0.9}, p, € {0.1,0.4,0.7}, and
hy € {4,50}. We set h, =1 and a4, =a, =1, so that
the priority relations between the two types are clear
(i.e., if type identities of customers were available,
among two customers of each type who have been
in the system for the same amount of time, the serv-
ice provider would choose to serve the type 1 cus-
tomer earlier). Arrivals were assumed to be Poisson
and service times were assumed to be exponentially
distributed. Finally, we assumed that the signal distri-
bution is uniformly distributed over [p, —0.1, p; +0.1].

We investigated the performances of four different
policies: the FCFS policy, the HSF policy, the opti-
mal two-class priority policy® and a new policy that
we call the generalized expected cu (GE-cu) policy and

3The optimal threshold under each scenario is obtained
numerically.
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is an extension of the generalized cu (G-cu) rule first
studied and proposed by Van Mieghem (1995). The
G-cu rule assumes that customers’ type identities are
observable and whenever the server completes a serv-
ice, it computes an index Hj, (z,)/a;y for each cus-
tomer n, where H,(-) is the first derivative of H,(-),
i(n) is the type of customer #, and z, is the time that
the customer spent in the system so far, and picks
the customer with the largest index value to service
next. Van Mieghem (1995) proves that G-cu rule is
asymptotically optimal for large traffic intensities and
under nondecreasing convex waiting cost functions.
The GE-cu policy carries the same idea to our setting.
More specifically, the policy works exactly the same as
the G-cu rule except that the index for customer # is
computed by x,H;(z,)/a; + (1 —x,)H;(z,)/a,, where x,,
is the signal of customer n.

We used Arena 10.0 simulation software and con-
structed 95% confidence intervals on the long-run
average waiting cost under each policy and scenario.
To obtain these confidence intervals, we used the
batch means output analysis method with 30 batches,
each having 32,000, 80,000, and 180,000 customers
per batch for the scenarios with A =0.3, A=0.7, and

A = 0.9, respectively. We have also deleted 100,000
initial observations from the runs with A € {0.3, 0.7}
and 200,000 initial observations from the runs with
A =0.9 based on a warm-up period analysis. Our
results are presented in Tables 1 and 2. When com-
paring confidence intervals for two policies in a row,
if the intervals overlapped, we conducted a paired-t
test and confirmed that there is a statistical difference
between any such policies at a significance level of
95% and the difference is in favor of the policy with
the smaller mean performance. Note, however, that
for the scenarios where we report the exact same con-
fidence interval for the FCFS and optimal two-class
policies, the two policies are exactly the same because
the optimal threshold for the two-class policy turns
out to be zero.

From Tables 1 and 2, we observe that HSF is no
longer the best policy. In fact, its performance is the
worst in most cases with significant margins partic-
ularly when system load is high. This poor perfor-
mance of HSF is not surprising. The convex waiting
cost function considered for this simulation study
punishes long customer waits severely. Under the
HSF policy, however, especially when the system load

Table 1 95% Confidence Intervals on the Long-Run Average Holding Costs When h, = 4

A Py GE-cu HSF Two-class priority FCFS

0.3 0.1 0.483+0.012 0.567 +£0.015 0.501 +0.012 0.501+0.012
0.3 04 0.825 £ 0.021 0.987 £0.027 0.828 +0.021 0.828 +0.021
0.3 0.7 1.158 +£0.027 1.407 £ 0.036 1.161 £0.027 1.161 +£0.027
0.7 0.1 14.21 +£0.336 29.61+1.225 14.42 +0.343 14.42 +0.343
0.7 04 24.29+0.574 54.11+£2.163 24.43 +0.574 24.43+0.574
0.7 0.7 34.37 +0.805 78.40 +£3.227 34.51+0.805 34.51+0.805
0.9 0.1 204.3+8.712 1,098 +£72.18 207.9 +8.811 207.9+8.811
0.9 04 350.1+14.94 2,0524+1314 351.9+14.94 351.9+14.94
0.9 0.7 495.0+21.06 3,015+195.3 496.8 +21.15 496.8 +21.15
Table 2 95% Confidence Intervals on the Long-Run Average Holding Costs When h, = 50

A P GE-cp HSF Two-class priority FCFS

0.3 0.1 1.992 +0.078 2.136 +0.087 2.055+0.078 2.214+0.078
0.3 04 7.710+0.198 9.000+0.288 8.040 £0.207 7.770+0.204
0.3 0.7 1317 £0.312 15.84 +0.429 13.23+0.315 13.23+£0.315
0.7 0.1 49.91 +1.204 67.97 +2.653 59.43 +£2.247 65.38 +1.673
0.7 04 224.7 +5.236 469.0 +18.06 228.9 +5.341 228.9 +5.341
0.7 0.7 390.6 +9.030 868.0 +£35.28 392.7+9.100 392.7+9.100
0.9 0.1 666.9 +29.16 1,584 +89.82 948.6 +40.32 945.0 +39.33
0.9 04 3,2314+139.5 17,190 + 1,089 3,2944+1404 3,294 41404
0.9 0.7 5,616+239.4 32,850+ 2,106 5,652 +240.3 5,652 +240.3
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is high, customers with low signals end up waiting
for a long time. The average waiting time across all
customers under HSF is the same as that under the
other policies but its variance (or its second moment)
is higher. In comparison, under FCFS and optimal
two-class policies, customers experience much more
homogeneous waiting times. In the two-class policy,
customers in class 2 will experience longer waiting
times but because the customers are ordered in a
FCEFS fashion within each class, no customer experi-
ences as long waits as some under HSE. Therefore,
optimal two-class and FCFS policies perform much
better than HSF in almost all scenarios. Note that
the optimal two-class policy and FCFS policy perform
very similarly (or exactly the same), except when A
and p; are small.

The GE-cu policy is the best policy in all the scenar-
ios considered. This policy helps avoid long customer
waits because customers are increasingly more likely
to be picked up by the server as they keep wait-
ing. Among the four policies we tested, GE-cu is the
only policy that takes into account both the times that
the customers have already spent in the system and
their signals, and therefore its good performance is
not surprising. It is, in fact, interesting that the per-
formances of the optimal two-class and FCES policies
are quite close to that of GE-cu under many scenarios.
However, GE-cu performs significantly better than
the optimal two-class and FCFS policies when there
is a significant difference between the waiting costs
of types 1 and 2 customers (h; and h,), a fraction
of type 1 customers p; is small, and system load
(p = A/u) is high. Note that this is consistent with our
numerical analysis for the linear cost case discussed
in §6, where we found that priority policies are most
beneficial when system load is high and a fraction of
type 1 customers is small.

10. Conclusions

Priority assignment decisions under imperfect infor-
mation on customer type identities have received
almost no attention in the literature. In particular, to
the best of our knowledge, this is the first paper that
explicitly considers imperfect customer information
and priority assignment decisions within the same
model. The paper provides several insights on what
kind of information can be used to classify customers

and how exactly that information should be used,
how the “optimal” classification policies depend on
system characteristics, and what kind of information
would be more useful than others.

In our formulation, each customer belongs to one
of two types. Type identities of the customers are not
available to the service provider but each arriving
customer provides a signal, a numerical score that is
an imperfect indicator of the customer’s type. In most
of the paper, we assume that customers incur wait-
ing costs that are linear in time and the signal coming
from a customer equals the probability that the cus-
tomer is of type 1, which is the type that should have
the higher priority. We find that increasing the num-
ber of priority classes decreases the long-run average
waiting cost for the system and the HSF policy that
gives priority to the customer with the highest signal
outperforms any finite class priority policy.

Our analysis of two-class policies helped us gener-
ate insights on the structural properties of the opti-
mal policies and the comparison of different signals.
In particular, we find that if there are two different
signals available, the long-run average cost is smaller
if the service provider uses the one that is larger
in convex ordering. This result suggests that signals
with more spread-out distributions are more benefi-
cial. Our numerical analysis suggests that such signals
are more preferable under the HSF policy as well.

When signals are less informative in the sense that
they do not reveal the type probabilities but the serv-
ice provider knows (or at least strongly believes) that
there is some stochastic ordering relation between the
signals coming from the two different types of cus-
tomers, we find that the HSF policy as well as any
finite class priority policy in which higher priority cus-
tomers have higher signals outperform the standard
FCFS policy if type 1 customers’ signals are larger than
those of type 2 customers in the usual stochastic sense.

Our numerical and simulation analysis provided
insights on the performances of different policies not
only when waiting costs are linear in time but also
when they are convex. Even though HSF outperforms
any finite class policy when costs are linear, its per-
formance is surprisingly close to that of the opti-
mal two-class policy. Furthermore, when the waiting
cost function is convex, HSF performs very poorly.
The optimal two-class policy and FCFS both perform
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much better than HSF. This suggests that optimal two-
class policies are more robust than HSF with respect
to customers’ varying delay sensitivities. However,
the best choice appears to be the GE-cu policy, which
is an extension of the generalized cu rule of Van
Mieghem (1995). When the waiting cost is a convex
and quadratic function of time, this policy performs
clearly better than all other alternatives. On the other
hand, when waiting costs are linear in time, the pol-
icy reduces to the HSF policy, which performs better
than all finite-class policies. One interesting avenue
for future work would be to investigate whether this
good performance of the policy could be formalized,
perhaps by establishing its asymptotic optimality in
the heavy-traffic regime as Van Mieghem did for the
generalized cu rule when type identities are available.
It is also of interest to investigate the performance of
the GE-cu policy under cost functions that are not
convex.

One crucial assumption in our model is that there
is a single server. In general, single-server systems can
provide useful insights for multiserver systems, which
behave like single-server queues under heavy loads.
Nevertheless, the analysis of multiple-server systems
is of interest at least to see whether or not and how
the insights we obtained from the single-server model
would change. Unfortunately, however, analysis of
multiserver systems is significantly more challenging
mainly because of the lack of closed-form expressions
for the steady-state expected waiting times for dif-
ferent priority classes. To our knowledge, the only
exception is the system with Poisson arrivals and
exponential service times, where customers’ service
times do not depend on their types. In this case, we
can show that all of our analytical results hold for the
multiserver system operating under these conditions,
see Appendix D online.

Future work might concentrate on several ways
that our model and results can be extended. One
possibility is to investigate a model where customers
renege from the system. It would be also of inter-
est to consider game-theoretic models, where cus-
tomers have the ability to influence their signals and
can act strategically to maximize their own objectives.
In another direction, future work might investigate
how to pick among a number of service improvement
alternatives. The service provider can take a variety

of actions to improve the quality of service provided
to the customers. For example, she can develop poli-
cies that make better use of the available signals, she
can identify and/or develop alternative customer sig-
nals that are more informative, or she can expand
the service capacity. Our analysis, in this paper cen-
tered around the first two options, assuming that the
service capacity is fixed. Future work might consider
more complicated decisions, particularly those that
consider various service improvement opportunities
simultaneously.

Electronic Companion

An electronic companion to this paper is available on
the Manufacturing & Service Operations Management website
(http://msom.pubs.informs.org/ecompanion.html).
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