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Proof of Proposition 1 The prices (p1, p2) are simultaneously announced. Let us first assume that we

know λ1, λ2. A player with valuation x1 from class–1 will then join the system after observing the price p1,

if U1(x1, λ1, λ2)≥ p1 and a player with valuation x2 from class–2 will then join the system after observing

the price p2, if U2(x2, λ2, λ1)≥ p2 . Note also that if she deviates from her strategy, and does not join the

system, given λ1, λ2, then she gains utility 0(< pi). This implies, equivalently, that she will join the system

if
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)
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+ c
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where 0≤ x1 ≤ 1 and a≤ x2 ≤ 1+ a. Define
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Then the customer will join if xi ≥ x∗

i , i= 1,2, i.e.,

s1(x1) =

 1

0

, if x∗
1 ≤ x1 ≤ 1

, else
s2(x2) =

 1

0

, if x∗
2 ≤ x2 ≤ 1+ a

, else

We still need to show that there exists only one pair of (λ1, λ2) that leads to (x∗
1, x

∗
2). Suppose there exists

another pair (ν1, ν2), such that
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which implies that
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and combined with c′′(·)< 0, leads to
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and so λi = νi, i = 1,2. Using also the fact that the service values follow a uniform distribution and λ1 =

Λ

∫ 1

x∗
1

s1(x1)dx1, λ2 =Λ

∫ a+1

x∗
2

s2(x1)dx2, we have that

λ∗
1 =Λ(1−x∗

1) and λ∗
2 =Λ(a+1−x∗

2).

From equation (1), there exists a marginal customer from each class whose utility will satisfy

x∗
1 + b1

a+1−x∗
2

a+2−x∗
1 −x∗

2

+ c

(
Λ(a+2−x∗

1 −x∗
2)

K

)
= p1,

x∗
2 + b2

1−x∗
1

a+2−x∗
1 −x∗

2

+ c

(
Λ(a+2−x∗

1 −x∗
2)

K

)
= p2.

The solution of this system, (x∗
1, x

∗
2) will denote the Nash equilibrium (NE) of the game. Since there is a

unique mapping between (x∗
1, x

∗
2) and (λ1, λ2), the NE can be equivalently expressed in terms of (λ1, λ2) and

the equilibrium prices will be derived as follows

p1(λ1, λ2) = 1−λ1/Λ+ b1λ2/(λ1 +λ2)+ c ((λ1 +λ2)/K) , (8)

p2(λ2, λ1) = 1+ a−λ2/Λ+ b2λ1/(λ1 +λ2)+ c ((λ1 +λ2)/K) . (9)

�
Proof of Lemma 1 We first show part (i). Note that solution (0,0) is never optimal. Consider solution

(0, ϵ) with ϵ > 0 and sufficiently small. This solution yields revenue R(0, ϵ) = ϵ(1 + c(ϵ/K)) − ϵ2/Λ. Now

limϵ↓0R(0, ϵ)> limϵ↓0 ϵ− ϵ2/Λ= 0 (recall that c(0)>−1). Therefore, λ∗
1 = λ∗

2 ⇒ λ∗
1λ

∗
2 > 0.

To show that λ∗
1λ

∗
2 > 0 ⇒ λ∗

1 = λ∗
2, consider problem (P1) and note that R(λ1, λ2) = λ1{1 − λ1/Λ +

b1λ2/(λ1+λ2)+c[(λ1+λ2)/K]}+λ2{1+a−λ2/Λ+b2λ1/(λ1+λ2)+c[(λ1+λ2)/K]}. Let {µi ≥ 0 : i= 1,2,3}

be KKT multipliers for constraints −(λ1 + λ2) +K ≥ 0, λ1 ≥ 0, λ2 ≥ 0, respectively. A candidate optimal

solution must satisfy µ1(−λ1 −λ2 +K) = 0, µ2λ1 = 0, µ3λ2 = 0, and the following stationarity conditions,

1− 2λ1/Λ+ bλ2
2/(λ1 +λ2)

2 −µ1 +µ2 + c[(λ1 +λ2)/K] + (λ1 +λ2)c
′[(λ1 +λ2)/K]/K = 0,

(10)

1+ a− 2λ2/Λ+ bλ2
1/(λ1 +λ2)

2 −µ1 +µ3 + c[(λ1 +λ2)/K] + (λ1 +λ2)c
′[(λ1 +λ2)/K]/K = 0.

(11)

Let a= 0, µ1 = µ2 = µ3 = 0, and subtract equation (10) from equation (11), which yields

(λ1 −λ2)[2/Λ+ b/(λ1 +λ2)] = 0.

Therefore, either λ1 = λ2 or λ1 + λ2 = −bΛ/2. Suppose λ1 + λ2 = −bΛ/2, which implies b < 0. Likewise,

letting a= 0, µ1 = µ2 = µ3 = 0, and adding up equations (10) and (11) yields λ1λ2 = (1+ b+ c(−bΛ/(2K))−

bΛ/(2K)c′(−bΛ/(2K)))bΛ2/4, which in turn implies 1+ b+ c(−bΛ/(2K))− bΛ/(2K)c′(−bΛ/(2K))< 0. Sub-

stituting λ1 + λ2 = −bΛ/2 into (10) leads to 1 + b + c(−bΛ/(2K)) − bΛ/(2K)c′(−bΛ/(2K)) = −2λ2(1 +

2λ2/(bΛ))/Λ that should be negative. This implies that 1+2λ2/(bΛ)> 0. Similarly, if we substitute λ1+λ2 =

−bΛ/2 into (11), we have that 1+2λ1/(bΛ)> 0. Adding these two implies that 1+2(λ1+λ2)/(bΛ)> 0 that

leads to a contradiction since we assumed that λ1 +λ2 =−bΛ/2. Therefore, λ∗
1λ

∗
2 > 0⇒ λ∗

1 = λ∗
2.
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Part (ii) follows directly from the fact that R(λ,0) =R(0, λ) if a= 0.

We now show part (iii). First, note that that λ1 = λ2 cannot be optimal if a > 0, because the system of

equations (10)–(11) does not have a solution in that case. Now consider solution (x, y), x> y. This solution

yields revenue R(x, y) = x(1−x/Λ)+y(1+a−y/Λ)+ bxy/(x+y)+(x+y)c((x+y)/K). Likewise, R(y,x) =

y(1− y/Λ)+x(1+ a−x/Λ)+ bxy/(x+ y)+ (x+ y)c((x+ y)/K). Note that R(y,x)−R(x, y) = a(x− y)> 0.

Thus, we must have λ∗
2 >λ∗

1 if a> 0. �
Proof of Proposition 2 We use the same notation as in the proof of Lemma 1. First, recall that solution

(0,0) is never optimal. Second, we know from Lemma 1 that λ∗
2 ≥ λ∗

1 ≥ 0, therefore, λ∗
2 > 0, and thus, µ∗

3 = 0

always. Hereafter, we remove the complementary slackness constraint µ3λ2 = 0 from further consideration.

To show part (i), consider a feasible solution to (P1) where λ1 > 0. Note that for sufficiently negative values

of b such a solution cannot be optimal because limb→−∞R(λ1, λ2) =−∞ if λ1 > 0. Therefore, for sufficiently

negative values of b, λ∗
1 = 0. Similarly, for sufficiently positive values of b we must have λ∗

1 > 0 because

limb→∞R(λ1, λ2) =∞ if λ1 > 0. Suppose now that λ∗
1 > 0, λ∗

2 = λ
′
at b= b

′
, but λ∗

1 = 0, λ∗
2 = λ

′′
at b= b

′′
> b

′
.

However, by the Envelope Theorem, ∂R(λ∗
1, λ

′)/∂b= λ∗
1λ

′/(λ∗
1+λ′)> 0, whereas ∂R(0, λ

′′
)/∂b= 0. Therefore,

solution (λ∗
1, λ

′
) could not have been optimal at b = b′, and we have arrived at a contradiction. We thus

conclude that there exists threshold b∗, which depends on K in general, such that λ∗
1 = 0 if b∈ (−∞, b∗(K)],

and λ∗
1 > 0 if b∈ (b∗(K),∞).

For the proof of part (ii), it suffices to show that function R(λ∗
1, λ

∗
2) ↑K if λ∗

1+λ∗
2 =K and K ≤min(Λ[1+

a+ c(1)]/2,2[1+ c(1)]Λ/3). By the Envelope Theorem, ∂R(λ∗
1, λ

∗
2)/∂K = µ∗

1− (λ∗
1+λ∗

2)
2c′[(λ∗

1+λ∗
2)/K]/K2,

where µ∗
1 can be calculated using equation (11). If λ∗

1 = 0, then µ∗
1 = 1 + a + c(1) + c′(1) − 2K/Λ; thus,

∂R(λ∗
1, λ

∗
2)/∂K = 1 + a + c(1) − 2K/Λ; therefore, R(λ∗

1, λ
∗
2) ↑ K if K ≤ Λ[1 + a + c(1)]/2. If λ∗

1 > 0, then

∂R(λ∗
1, λ

∗
2)/∂K = 1+ a+ c(1)− 2λ∗

2/Λ+ b(K − λ∗
2)

2/K2. In addition, equations (10) and (11) jointly yield

the solution λ∗
1 = K/2 − aKΛ/[2(2K + bΛ)], λ∗

2 = K/2 + aKΛ/[2(2K + bΛ)]; therefore, we require that

b > a− 2K/Λ ≥ −2K/Λ so that λ∗
1 > 0. (If b < −a− 2K/Λ, the solution in question is a local minimum.)

Because λ∗
2 ≥K/2 and ∂R(λ∗

1, λ
∗
2)/∂K is a second–order polynomial wrt λ∗

2, for our purposes it suffices to

show that limλ∗
2→K− ∂R(λ∗

1, λ
∗
2)/∂K ≥ 0 and that ∂R(λ∗

1, λ
∗
2)/∂K|a=0,λ∗

1=K/2 ≥ 0. To that end, first note that

limλ∗
2→K− ∂R(λ∗

1, λ
∗
2)/∂K = 1+a+c(1)−2K/Λ≥ 0, where the last inequality is becauseK ≤Λ[1+a+c(1)]/2.

Furthermore, ∂R(λ∗
1, λ

∗
2)/∂K|a=0,λ∗

1=K/2 = b/4−K/Λ+ 1+ c(1)>−3K/(2Λ) + 1+ c(1)≥ 0, where the last

two inequalities are because b >−2K/Λ and K ≤ 2[(1+ c(1)]Λ/3, respectively.

Part (iii) follows immediately from the fact that λ∗
1 +λ∗

2 ≤ 2Λ.

To show part (iv), first note that parts (ii) and (iii) establish that there exists at least one switching point at

which the system goes from being full to being not full. We show next that if the conditions of part (iv) hold,

the switching point is unique. Letting λ1+λ2 =K in equation (11) yields µ∗
1 = 1+a+ c(1)+ c′(1)−2λ∗

2/Λ+

b(λ∗
1)

2/K2. To show that the switching point is unique, it suffices to show that µ∗
1(K) ↓K. To this end, first

suppose that b << 0⇒ λ∗
1 = 0 ∀K ≥ 0. In this case, µ∗

1(K) = 1 + a+ c(1) + c′(1)− 2K/Λ⇒ ∂µ∗
1(K)/∂K =

−2K/Λ< 0. Next, suppose b >> 0⇒ λ∗
1 > 0 ∀K ≥ 0. Letting λ1 +λ2 =K, µ2 = 0 in the system of equations

(10)–(11) yields the solution λ∗
1 =K/2−aKΛ/[2(2K+ bΛ)], λ∗

2 =K/2+aKΛ/[2(2K+ bΛ)]. Straightforward

calculus yields ∂µ∗
1(K)/∂K =−1/Λ− ba2Λ2/(2K + bΛ)3 < 0. �
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Proof of Lemma 3 The proof of part (ii) is straightforward. We show here the proof for part (i); in

particular, we will show that λ∗
1 ≥ λ∗

2 if b1 ≥ b2 and λ∗
2 ≥ λ∗

1 if b2 ≥ b1 and λ∗
1λ

∗
2 > 0. To that end, consider

problem (P2′) and note that R(λ1, λ2) = λ1{1− λ1/Λ+ b1λ2/(λ1 + λ2) + c[(λ1 + λ2)/K]}+ λ2{1− λ2/Λ+

b2λ1/(λ1 + λ2) + c[(λ1 + λ2)/K] + a}. Let {µi ≥ 0 : i = 1,2,3} be KKT multipliers for constraints −(λ1 +

λ2)+K ≥ 0, λ1 ≥ 0, λ2 ≥ 0, respectively. Let g ∈R be the Lagrange multiplier for constraint [b1/(λ1+λ2)+

1/Λ]λ2 − [b2/(λ1 + λ2) + 1/Λ]λ1 − a= 0. A candidate optimal solution must satisfy µ1(−λ1 − λ2 +K) = 0,

µ2λ1 = 0, µ3λ2 = 0, [b1/(λ1 + λ2) + 1/Λ]λ2 − [b2/(λ1 + λ2) + 1/Λ]λ1 − a= 0, and the following stationarity

conditions.

1− 2λ1/Λ+ bλ2
2/(λ1 +λ2)

2 −µ1 +µ2 + c[(λ1 +λ2)/K] + (λ1 +λ2)c
′[(λ1 +λ2)/K]/K

−g[bλ2/(λ1 +λ2)
2 +1/Λ] = 0, (12)

1+ a− 2λ2/Λ+ bλ2
1/(λ1 +λ2)

2 −µ1 +µ3 + c[(λ1 +λ2)/K] + (λ1 +λ2)c
′[(λ1 +λ2)/K]/K

+g[bλ1/(λ1 +λ2)
2 +1/Λ] = 0. (13)

Let a= 0, µ1 = µ2 = µ3 = 0, and subtract equation (12) from equation (13), which yields

(λ1 −λ2 + g)[2/Λ+ b/(λ1 +λ2)] = 0.

Therefore, either g = λ2 − λ1 or λ1 + λ2 = −bΛ/2. If b1 = b2, we know from part (i) of Lemma 1 that

λ∗
1 = λ∗

2, which remains an optimal solution here because it satisfies the single–price constraint (4) if a= 0.

Thus, we assume—without loss of generality—that b1 > b2 for the remainder of the proof. Suppose that

λ1 + λ2 =−bΛ/2. Then, the last equation together with equation (4) for a= 0 yield λ1 + λ2 = 0, which is

not possible unless λ1 = λ2 = 0. However, we know from part (i) of Lemma 1 that solution (0,0) is never

optimal. Therefore, g∗ = λ∗
2 −λ∗

1 when λ∗
1λ

∗
2 > 0 and a= 0.

Ignoring the non-binding constraints, the Lagrange function for problem (P2′) and a = 0 is L(λ1, λ2) =

λ1{1 − λ1/Λ + b1λ2/(λ1 + λ2) + c[(λ1 + λ2)/K]} + λ2{1 − λ2/Λ + b2λ1/(λ1 + λ2) + c[(λ1 + λ2)/K]} +

g{[b1/(λ1 + λ2) + 1/Λ]λ2 − [b2/(λ1 + λ2) + 1/Λ]λ1}. Let L∗(λ∗
1, λ

∗
2)≡maxL(λ1, λ2). By the Envelope The-

orem, ∂L∗(λ∗
1, λ

∗
2)/∂b2 = λ∗

1λ
∗
2/(λ

∗
1 + λ∗

2)− g∗λ∗
1/(λ

∗
2 + λ∗

2) = (λ∗
1)

2/(λ∗
1 + λ∗

2), where the second equality is

because g∗ = λ∗
2 −λ∗

1. Likewise, ∂L∗(λ∗
1, λ

∗
2)/∂b1 = (λ∗

2)
2/(λ∗

1 +λ∗
2).

To complete the proof, suppose wlog that b1 > b2 and that solution (λ′
1(b1), λ

′
2(b1)), where λ

′
1 <λ′

2, satisfies

constraint (4) and the stationarity conditions (12)-(13). By applying the expressions that the Envelope

Theorem stipulates, R(λ′
1(b1), λ

′
2(b1)) ↑ b1; therefore, solution (λ′

1(b1), λ
′
2(b1)), where 0<λ′

1(b1)<λ′
2(b1), will

be optimal if b1 is sufficiently large. Note, however, that if b1 > b2 ≥ 0 or b1 ≥ 0> b2 and λ2 >λ1, constraint

(4) cannot be satisfied. Therefore, we have reached a contradiction; a solution such that λ1 <λ2 cannot be

optimal if b1 ≥ b2. �
Proof of Proposition 3 We use the same notation as in the proof of Lemma 3. First, note that solution

(0,0) is never optimal. Second, we know from part (iii) of Lemma 1 that in an exclusive system, λ∗
2 >λ∗

1 = 0

if a> 0. If a= 0, λ∗
2 >λ∗

1 = 0 is still optimal. Therefore, λ∗
2 > 0 and thus, µ∗

3 = 0 always. Hereafter, we remove

the complementary slackness constraint µ3λ2 = 0 from further consideration.
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To prove the first statement of part (i), consider a feasible solution to (P2′) such that λ1 > 0. Note that

for sufficiently negative values of b such a solution cannot be optimal because limb→−∞R(λ1, λ2) = −∞ if

λ1 > 0. Therefore, for sufficiently negative values of b, λ∗
1 = 0. Similarly, for sufficiently positive values of b

we must have λ∗
1 > 0 because limb→∞R(λ1, λ2) =∞ if λ1 > 0.

Ignoring the non-binding constraints, the Lagrange function for problem (P2′) is L(λ1, λ2) = λ1{1−λ1/Λ+

b1λ2/(λ1+λ2)+ c[(λ1+λ2)/K]}+λ2{1+a−λ2/Λ+ b2λ1/(λ1+λ2)+ c[(λ1+λ2)/K]}+µ1(−λ1−λ2+K)+

g{[b1/(λ1 + λ2) + 1/Λ]λ2 − [b2/(λ1 + λ2) + 1/Λ]λ1 − a}. Let L∗(λ∗
1, λ

∗
2) ≡ maxL(λ1, λ2). By the Envelope

Theorem, ∂L∗(λ∗
1, λ

∗
2)/∂b1 = (λ∗

1λ
∗
2 + g∗λ∗

2)/(λ
∗
1 + λ∗

2) = λ∗
2(λ

∗
1 + g∗)/(λ∗

1 + λ∗
2). Similarly, ∂L∗(λ∗

1, λ
∗
2)/∂b2 =

λ∗
1(λ

∗
2− g∗)/(λ∗

1+λ∗
2). First, we will show that λ∗

1+ g∗ ≥ 0. Suppose, to the contrary, that λ∗
1+ g∗ < 0 at the

optimal solution. This necessarily implies that for this particular solution R(λ∗
1, λ

∗
2) ↓ b1, b1 ∈ (−∞,∞). Now

recall that if λ1 > 0, limb1→−∞R(λ1, λ2) =−∞. Therefore, a solution such that λ∗
1+g∗ < 0 cannot be optimal

at any value of b1. By the same logic, it must be true that λ∗
2 − g∗ ≥ 0 at the optimal solution. Therefore,

R(λ∗
1, λ

∗
2) ↑ b1 and R(λ∗

1, λ
∗
2) ↑ b2. On the other hand, the revenue of an exclusive system is not a function of

b1, b2; therefore, we conclude that there exists threshold b∗, which depends on K in general, such that λ∗
1 = 0

if b∈ (−∞, b∗(K)], and λ∗
1 > 0 if b∈ (b∗(K),∞). This completes the proof of the first statement of part (i).

To prove the second statement of part (i), let a= 0, b1 + b2 = b̃, i.e., b is constant, and assume wlog that

b1 ≥ b2, in which case λ∗
1 ≥ λ∗

2 by Lemma 3. Also, recall from the proof of Lemma 3 that g∗ = λ∗
2 −λ∗

1 when

λ∗
2λ

∗
1 > 0 and a = 0. Then, ∂L∗(λ∗

1, λ
∗
2)/∂b1 − ∂L∗(λ∗

1, λ
∗
2)/∂b2 = [(λ∗

2)
2 − (λ∗

1)
2]/(λ∗

1 + λ∗
2) ≤ 0. Therefore,

L∗(λ∗
1, λ

∗
2) ↓ ∆b. Because the revenue of an exclusive system is not a function of b1, b2, there must exist

threshold ∆b∗, which depends on K in general, such that λ∗
1 > 0 if b ∈ (0,∆b∗(K)], and λ∗

1 = 0 if ∆b ∈
(∆b∗(K),∞).

For the proof of part (ii), it suffices to show that function R(λ∗
1, λ

∗
2) ↑K if λ∗

1+λ∗
2 =K and K ≤min(Λ[1+

c(1)],Λ[1 + a+ c(1)]/2). By the Envelope Theorem, ∂R(λ∗
1, λ

∗
2)/∂K = µ∗

1 − (λ∗
1 + λ∗

2)
2c′[(λ∗

1 + λ∗
2)/K]/K2,

where µ∗
1 can be calculated using equation (13). If λ∗

1 = 0, then µ∗
1 = 1 + a + c(1) + c′(1) − 2K/Λ; thus,

∂R(λ∗
1, λ

∗
2)/∂K = 1 + a + c(1) − 2K/Λ; therefore, R(λ∗

1, λ
∗
2) ↑ K if K ≤ Λ[1 + a + c(1)]/2. Consider next

the case λ∗
1 > 0. The fact that λ∗

1 + λ∗
2 =K and equation (4) jointly imply the solution λ∗

1 =K[K + (b1 −
a)Λ]/(2K + bΛ), λ∗

2 = K[K + (b2 + a)Λ]/(2K + bΛ); therefore, we require that b1 > a − K/Λ ≥ −K/Λ,

b2 > −K/Λ, b > a − 2K/Λ ≥ −2K/Λ so that λ∗
1 > 0. Using the expressions for λ∗

1, λ∗
2, and subtracting

equation (12) from (13) yields g∗ = (a + b2 − b1)KΛ/(2K + bΛ). Also, by equation (13), µ∗
1 = 1 + a +

c(1) + c′(1) − 2λ∗
2/Λ + b(K − λ∗

2)
2/K2 + g∗[b(K − λ∗

2)/K
2 + 1/Λ]; thus, ∂R(λ∗

1, λ
∗
2)/∂K = 1 + a + c(1) −

2λ∗
2/Λ+ b(K − λ∗

2)
2/K2 + g∗[b(K − λ∗

2)/K
2 + 1/Λ]. Because K > λ∗

2 > 0 and ∂R(λ∗
1, λ

∗
2)/∂K is a second–

order polynomial wrt λ∗
2, for our purposes it suffices to show that limλ∗

2→K− ∂R(λ∗
1, λ

∗
2)/∂K ≥ 0 and that

limλ∗
2→0+ ∂R(λ∗

1, λ
∗
2)/∂K ≥ 0. Because limλ∗

2→K− g∗ = (b2+K/Λ)KΛ/(2K+bΛ), limλ∗
2→K− ∂R(λ∗

1, λ
∗
2)/∂K =

1+a+ c(1)−2K/Λ+(b2+K/Λ)K/(2K+ bΛ)≥ 0, where the last inequality is because K ≤Λ[1+a+ c(1)]/2

and b2 >−K/Λ. Similarly, limλ∗
2→0+ g∗ =−K, because b1 >−K/Λ and λ∗

2 → 0+ iff b2 →−K/Λ and a→ 0.

Thus, limλ∗
2→0+ ∂R(λ∗

1, λ
∗
2)/∂K = 1+ c(1)−K/Λ≥ 0, because K ≤Λ[1+ c(1)].

Part (iii) follows immediately from the fact that λ∗
1 +λ∗

2 ≤ 2Λ.

To show part (iv), first note that parts (ii) and (iii) establish that there exists at least one switching point at

which the system goes from being full to being not full. We show next that if the conditions of part (iv) hold,
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the switching point is unique. The proof for the case b << 0⇒ λ∗
1 = 0 ∀K ≥ 0 can be found in the proof of part

(iv) of Proposition 2. Next, suppose that b >> 0⇒ λ∗
1 > 0 ∀K ≥ 0. The fact that λ∗

1 +λ∗
2 =K and equation

(4) jointly imply the solution λ∗
1 =K[K + (b1 − a)Λ]/(2K + bΛ), λ∗

2 =K[K + (b2 + a)Λ]/(2K + bΛ). Using

these expressions for λ∗
1, λ

∗
2, and subtracting equation (12) from (13) yields g∗ = (a+ b2− b1)KΛ/(2K+ bΛ).

Also, by equation (12), µ∗
1 = 1+ c(1) + c′(1)− 2λ∗

1/Λ+ b(K − λ∗
1)

2/K2 − g∗[b(K − λ∗
1)/K

2 +1/Λ]. To show

that the switching point is unique, it suffices to show that µ∗
1(K) ↓K. To that end, note that

∂µ∗
1(K)

∂K
=

−8K3 − 6bKΛ(2K + bΛ)− 2bΛ3[a(b1 − b2)+ 2b1b2]

Λ(2K + bΛ)3
.

In the last fraction, the denominator is positive because b > 0; thus, we focus on the numerator, whose sign

is ambiguous in general. First, notice that the numerator is strictly decreasing in K, because b > 0. Second,

notice that if a(b1 − b2)+2b1b2 ≥ 0, then ∂µ∗
1(K)/∂K < 0, which implies that the switching point is unique.

Suppose next that a(b1− b2)+2b1b2 < 0. Then, for sufficiently small values of K, ∂µ∗
1(K)/∂K > 0; therefore,

as the numerator is strictly decreasing in K, there exists a unique value of K above which ∂µ∗
1(K)/∂K < 0.

In addition, because λ∗
1 + λ∗

2 = K if K ≤ Λ/2, solution (0,Λ(1 + a)/2) can only become optimal at some

sufficiently large value of capacity at which ∂µ∗
1(K)/∂K < 0. As a result, the switching point is, again,

unique. �
Proof of Lemma 4 For part (i), we provide the proof for the case λ∗

1λ
∗
2 > 0, λ∗

1 < (1− x∗)K, λ∗
2 < x∗K.

The proofs for the other cases are identical in spirit and thus omitted. Solution {(λ∗
1, λ2) : λ

∗
1λ

∗
2 > 0, λ∗

1 <

(1−x∗)K,λ∗
2 <x∗K} satisfies the following stationarity conditions:

∂R(λ1, λ2, x)/∂λ1 = 0 ⇔ 1− 2λ1/Λ+ c{λ1/[(1−x)K]}+λ1c
′{λ1/[(1−x)K]}/[(1−x)K] = 0,

(14)

∂R(λ1, λ2, x)/∂λ2 = 0 ⇔ 1+ a− 2λ2/Λ+ c[λ2/(xK)]+λ2c
′[λ2/(xK)]/(xK) = 0, (15)

∂R(λ1, λ2, x)/∂x= 0 ⇔ λ2
1c

′{λ1/[(1−x)K]}/[(1−x)2K]−λ2
2c

′[λ2/(xK)]/(x2K) = 0. (16)

We first show that for any allocation x∈ (0,1), there exists at most one solution (λ∗
1(x), λ

∗
2(x)) satisfying

(14) and (15). (If no such solution exists, the optimal solution must be an extreme point.) In particular,

we will show that there exists at most one λ∗
2(x) satisfying (15)—the proof that there is at most one λ∗

1(x)

satisfying (14) is very similar as the two equations differ only by constant a≥ 0 once 1−x is replaced by x

in (14).

If we let u ≡ λ2/(xK), the LHS of equation (15) becomes G(u) ≡ 1 + a − 2uxK/Λ + c(u) + uc′(u). It

suffices to show that G(u) = 0 cannot have two roots in (0,1). Note that G(0) = 1 + a+ c(0) > 0 because

c(0)>−1, and that ∂G(u)/∂u=−2xK/Λ+2c′(u) + uc′′(u). Because −2xK/Λ< 0, c′′(u)< 0⇒ uc′′(u)< 0,

either G(u) ↓ u in (0,1) or G(u) ↑ u in (0,1), or G(u) ↑ u in (0, u∗) and G(u) ↓ u in (u∗,1), u∗ ∈ (0,1). Thus,

G(u) cannot have two roots in (0,1). Therefore, for any allocation x∈ (0,1), there exists at most one optimal

solution to (P3) such that λ∗
1(x)λ

∗
2(x)> 0. To complete the proof for part (i), we note that the allocation

x= λ2/(λ1 +λ2) satisfies (16) and invoke parts (ii) and (iii) of the lemma, which we show next.

For part (ii), we will show that if λ∗
1λ

∗
2 > 0, the uniquely optimal allocation satisfies λ∗

1/[(1− x∗)K] =

λ∗
2/(x

∗K)⇔ x∗ = λ∗
2/(λ

∗
1 +λ∗

2), i.e., the two capacity segments have the same crowding level at the optimal
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solution. To that end, let λ1/[(1− x)K]≡ u1 and λ2/(xK)≡ u2. The objective function in (P3) in terms of

u1, u2 is

R(u1, u2) = λ1 +λ2 − (λ2
1 +λ2

2)/Λ+λ1c(u1)+λ2c(u2)+λ2a.

In the revenue function above, fix λ1, λ2, where λ1λ2 > 0, and notice that only the term λ1c(u1)+λ2c(u2)

involves allocations u1, u2. Suppose u1 ̸= u2. Because c′′ < 0,

[λ1/(λ1 +λ2)]c(u1)+ [λ2/(λ1 +λ2)]c(u2)< c[u1λ1/(λ1 +λ2)+u2λ2/(λ1 +λ2)]

⇔ λ1c(u1)+λ2c(u2) < λ1c[u1λ1/(λ1 +λ2)+u2λ2/(λ1 +λ2)]+λ2c[u1λ1/(λ1 +λ2)+u2λ2/(λ1 +λ2)].

Therefore, crowding levels u′
1, u

′
2 such that u′

1 = u′
2 = u1λ1/(λ1+λ2)+u2λ2/(λ1+λ2) yield strictly higher

revenue than crowding levels u1, u2. As a result, u1 = u2 at optimality.

Part (iii) follows directly from part 2 if λ∗
1λ

∗
2 > 0. If λ∗

1 = 0, notice that an allocation x∗ < 1 cannot satisfy

(16), thus it cannot be optimal.

For part (iv), the optimal allocation if a = 0 follows directly from the fact that x∗ = λ∗
2/(λ

∗
1 + λ∗

2) and

equations (14) and (15). Next we show that x∗(a) ↑ a. Let u∗ ≡ λ∗
1/[(1− x∗)∗K] = λ∗

2/(x
∗K) so that (14)

becomes F (u∗(x∗), x∗)≡ 1− 2u∗(1−x∗)K/Λ+ c(u∗)+u∗c′(u∗) = 0. By the Implicit Function Theorem,

∂u∗(x∗)/∂x∗ =−∂F (u∗, x∗)/∂x∗

∂F (u∗, x∗)/∂u∗ =− 2u∗K/Λ

2(x∗ − 1)K/Λ+2c′(u∗)+u∗c′′(u∗)
.

In the last fraction, note that u∗ > 0 and x∗ < 1. We will show that 2c′(u∗) + u∗c′′(u∗) ≤
0 so that ∂u∗(x∗)/∂x∗ > 0. Using straightforward calculus, ∂2R(λ1, λ2, x)/∂x

2|
λ1=λ∗

1 ,λ2=λ∗
2 ,x=x∗ =

∂2R(u,x)/∂x2|
u=u∗,x=x∗ = (u∗)2K[2c′(u∗) + u∗c′′(u∗)]/[x∗(1− x∗)]. Because (u∗, x∗) is an optimal solution,

∂2R(u,x)/∂x2|u=u∗,x=x∗ ≤ 0; therefore, ∂u∗(x∗)/∂x∗ > 0.

Similarly, adding up equations (14) and (15) yields H(u∗(a), a)≡ 2+a−2u∗K/Λ+2c(u∗)+2u∗c′(u∗) = 0.

By the Implicit Function Theorem,

∂u∗(a)/∂a=− ∂H(u∗, a)/∂a

∂H(u∗, a)/∂u∗ =− 1

2[−K/Λ+2c′(u∗)+u∗c′′(u∗)]
> 0,

where the last inequality is because 2c(u∗) + 2u∗c′(u∗) ≤ 0. Finally, by the chain rule of differentiation,

∂x∗(a)/∂a= (∂u∗(a)/∂a)/(∂u∗(x∗)/∂x∗)> 0. �
Proof of Corollary 1 If b= 0, the objective of (P1) is

RP1(λ1, λ2) = λ1 +λ2 − (λ2
1 +λ2

2)/Λ+(λ1 +λ2)c[(λ1 +λ2)/K] +λ2a,

whereas the objective of (P3) is

RP3(λ1, λ2, x) = λ1 +λ2 − (λ2
1 +λ2

2)/Λ+λ1c{λ1/[(1−x)K]}+λ2c[λ1/(xK)]+λ2a.

Consider now an optimal solution to (P3) {λ∗
1, λ

∗
2, x

∗ = λ∗
2/(λ

∗
1 + λ∗

2)} and notice that (λ∗
1, λ

∗
2) is a feasible

solution to (P1) and yields the same revenue. Thus, maxRP1(λ1, λ2)≥maxRP3(λ1, λ2, x). Likewise, consider

an optimal solution to (P1) (ξ∗1, ξ
∗
2) and notice that solution {ξ∗1, ξ∗2, x∗ = ξ∗2/(ξ

∗
1 + ξ∗2)} is a feasible solution

to (P3) and yields the same revenue. Thus, maxRP1(λ1, λ2)≤maxRP3(λ1, λ2, x). The last condition along

with maxRP1(λ1, λ2)≥maxRP3(λ1, λ2, x) jointly imply that maxRP1(λ1, λ2) =maxRP3(λ1, λ2, x). Because

both (P1) and (P3) have unique optimal solutions, they must have the same optimal solution. �
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Proof of Theorem 1 Note that if b = 0, the optimal solutions and the revenues are the same with or

without capacity allocation, as Corollary 1 suggests. Further, by the Envelope Theorem, when classes do

not interact, revenue is not a function of b. On the other hand, when classes interact, ∂[maxR(λ1, λ2)]/∂b=

λ∗
1λ

∗
2/(λ

∗
1 +λ∗

2)≥ 0. Hence, the result. �
Proof of Theorems 2 In the entire proof we make (implicit) use of the fact that if b1 = b2 = 0, the optimal

solutions and the revenues are the same with and without capacity allocation. Also, note that if λ∗
1 = 0 in

some region of the b1 × b2 space, revenue is invariant of b1, b2 in that region. Thus, throughout this proof,

we focus on the case in which λ∗
1λ

∗
2 > 0 in problem (P2) unless we note otherwise. Consider now stationarity

conditions (12) and (13). Because λ∗
1λ

∗
2 > 0, µ∗

2 = µ∗
3 = 0; subtracting (12) from (13) yields the optimal

Lagrange multiplier g∗ = λ∗
2 − λ∗

1 − a/[b/(λ∗
1 + λ∗

2) + 2/Λ]. To study the behavior of the optimal revenue

function wrt b1, b2, we need the term in the optimal Lagrange function that depends on b1, b2. The relevant

term is L(λ∗
1, λ

∗
2)≡ bλ∗

1λ
∗
2/(λ

∗
1 +λ∗

2)+ g∗{[b1/(λ∗
1 +λ∗

2)+ 1/Λ]λ∗
2 − [b2/(λ

∗
1 +λ∗

2)+ 1/Λ]λ∗
1 − a}.

Parts (i) and (iv) of the theorems follow from the fact that that R(λ∗
1, λ

∗
2) ↑ b1, R(λ∗

1, λ
∗
2) ↑ b2, which we

showed in the proof of part (i) of Proposition 3.

Next we show parts (ii) of both theorems, which require b2 > 0> b1. If b1 ≤ a−K/Λ, we know from Lemma

2 that without capacity allocation, an exclusive system is optimal. Because the revenue of an exclusive system

can be replicated by allocating capacity x = 1, allocating capacity can only improve revenue. Hence, part

(ii)-a of both theorems. To show parts (ii)-b and (ii)-c of both theorems, it suffices to show the following: 1)

R(λ∗
1, λ

∗
2) ↑ b1, R(λ∗

1, λ
∗
2) ↑ b2; 2) If b= 0 and b2 > 0> b1, it is optimal to allocate capacity. We have already

shown (1) and to show (2), suppose that b1 =−b2. In that case, constraint (4) implies λ∗
2 − λ∗

1 = (a+ b2)Λ;

thus, g∗ = λ∗
2 − λ∗

1 − a/(2/Λ) = (a/2 + b2)Λ> 0. Now recall that if b1 = b2 = 0, revenues are the same with

and without capacity allocation, and note that for fixed b, ∂L/∂b2 − ∂L/∂b1 =−g∗ < 0. Therefore, if b= 0

and b2 > 0> b1, it is optimal to allocate capacity.

Next we show part (iii) of Theorem 2, which requires b1 > 0 > b2. If b2 ≤ −K/Λ, or b1 ≤ a−K/Λ and

b2 > −K/Λ, we know from Lemma 2 that without capacity allocation, an exclusive system is optimal. In

that case, as we argued earlier, allocating capacity yields the same or higher revenue. Hence, part (iii)-a.

Suppose now that b1 > a−K/Λ and b2 >−K/Λ. If λ∗
1 = 0 in problem (P2), the proof for part (iii)-a of the

theorem applies.

To prove part (iii)-c of Theorem 2, we will show that the revenue from not allocating capacity strictly

increases in b1 − b2 if b1 =−b2 and λ∗
1 > 0 in problem (P2). Recall that if b1 =−b2, constraint (4) implies

λ∗
2 − λ∗

1 = (a+ b2)Λ⇒ g∗ = λ∗
2 − λ∗

1 − a/(2/Λ) = (a/2 + b2)Λ; thus, g
∗ ≥ 0 if b2 ≥ −a/2. Now recall that if

b1 = b2 = 0, revenues are the same with and without capacity allocation, and note that for fixed b, ∂L/∂b1−

∂L/∂b2 = g∗ ≤ 0, where the last inequality is strict if b2 > −a/2. Therefore, if b = 0, a/2 ≥ b1 > a−K/Λ,

b2 ≥−a/2 and λ∗
1 > 0 in problem (P2), it is strictly optimal to not allocate capacity. �


