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Appendix A - Proofs of the Results

Proof of Proposition 1: To show that fj(yj,x,p) is concave in yj, it suffices to show that
E

[
r
(
w + W̄j(y), v + V̄j(y)

)]
is concave in yj for any real numbers w and v. Now, notice

that W̄j(y) and V̄j(y) = i are dependent. Furthermore, conditioning on V̄j(y) = i, W̄j(y) is
a binomial random variable with parameters i and α0j/β0j. A direct application of Lemma
1 yields the result. ¥.

Lemma 1. Define B(i, p) to be a Binomial random variable with parameters i and p. Let
{Wj, j = 0, 1, 2. . . . } and {Vj, j = 0, 1, 2. . . . } be two sequences of random variables such

that (1) Wj
d
= B(j, α), (2) Vj

d
= B(j, β) and (3) conditioning on Vj = i, Wj

d
= B(i, α/β) for

0 ≤ i ≤ j, where 0 ≤ α ≤ β ≤ 1. Suppose that r(x, z) is submodular and jointly concave in
x and z. For any arbitrary real numbers w and v, let g(j) = E{r(Wj +w, Vj +v)}. Then g(j)
is a concave function over the set of non-negative integers, i.e., g(j + 2) + g(j) ≤ 2g(j + 1),
∀j = 0, 1, 2, . . . .

Proof: The proof uses a coupling argument. Let {Zi,k, k = 0, 1, 2, . . . } be a sequence of
i.i.d. Bernoulli random variables with parameter β for each k ∈ {1, 2, 3, 4}. First, we write

g(j + 2) + g(j)− 2g(j + 1)

=E{r(B(

j+2∑

k=1

Z1,k, α/β) + w,

j+2∑

k=1

Z1,k + v) + r(B(

j∑

k=1

Z2,k, α/β) + w,

j∑

k=1

Z2,k + v)

− r(B(

j+1∑

k=1

Z3,k, α/β) + w,

j+1∑

k=1

Z3,k + v)− r(B(

j+1∑

k=1

Z4,k, α/β) + w,

j+1∑

k=1

Z4,k + v)}. (A-1)

Now we couple the random variables so that Z1,k = Z2,k = Z3,k = Z4,k = zk for k =
0, 1, 2, . . . , j, Z1,j+1 = Z3,j+1 = ẑ and Z1,j+2 = Z4,j+1 = z̃. There are four possible cases for
the pair (ẑ, z̃): (i) ẑ = z̃ = 0, (ii) ẑ = 1 and z̃ = 0, (iii) ẑ = 0 and z̃ = 1 and (iv) ẑ = z̃ = 1.
For case (i), (ii) and (iii), (A-1) reduces to 0. In the rest of the proof, we show that (A-1) is
also non-positive under case (iv).

Let z =
∑j

k=1 zk. Then, under case (iv), we have

g(j + 2) + g(j)− 2g(j + 1)

=E{r(B(z + 2, α/β) + w, z + 2 + v) + r(B(z, α/β) + w, z + v)

− r(B(z + 1, α/β) + w, z + 1 + v)− r(B(z + 1, α/β) + w, z + 1 + v)}. (A-2)

Following as above, we define {Ui,k, k = 0, 1, 2, . . . } be a sequence of i.i.d. Bernoulli random
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variables with parameter α/β for each k ∈ {1, 2, 3, 4}. Then we write equation (A-2) as

g(j + 2) + g(j)− 2g(j + 1)

=E{r(
z+2∑

k=1

U1,k + w, z + 2 + v) + r(
z∑

k=1

U2,k + w, z + v)

− r(
z+1∑

k=1

U3,k + w, z + 1 + v)− r(
z+1∑

k=1

U4,k + w, z + 1 + v)}. (A-3)

Now we couple the random variables so that U1,k = U2,k = U3,k = U4,k = uk for k =
0, 1, 2, . . . , z, U1,z+1 = U3,z+1 = û and U1,z+2 = U4,z+1 = ũ. There are four possible cases for
the pair (û, ũ):
Case 1: û = ũ = 0. Then the term inside the expectation in (A-3) becomes

r(
z∑

k=1

uk+w, z+2+v)+r(
z∑

k=1

uk+w, z+v)−r(
z∑

k=1

uk+w, z+1+v)−r(
z∑

k=1

uk+w, z+1+v) ≤ 0

due to the concavity of r(·, ·).
Case 2: û = 1 and ũ = 0. Then the term inside the expectation in (A-3) becomes

r(
z∑

k=1

uk+1+w, z+2+v)+r(
z∑

k=1

uk+w, z+v)−r(
z∑

k=1

uk+1+w, z+1+v)−r(
z∑

k=1

uk+w, z+1+v) ≤ 0

since

r(
z∑

k=1

uk + 1 + w, z + 2 + v)− r(
z∑

k=1

uk + 1 + w, z + 1 + v)

≤r(
z∑

k=1

uk + 1 + w, z + 1 + v)− r(
z∑

k=1

uk + 1 + w, z + v) (due to the concavity of r(·))

≤r(
z∑

k=1

uk + w, z + 1 + v)− r(
z∑

k=1

uk + w, z + v). (due to the submodularity of r(·, ·))

Case 3: û = 0 and ũ = 1. Then the term inside the expectation in (A-3) becomes

r(
z∑

k=1

uk+1+w, z+2+v)+r(
z∑

k=1

uk+w, z+v)−r(
z∑

k=1

uk+w, z+1+v)−r(
z∑

k=1

uk+1+w, z+1+v) ≤ 0,

following the same proof in Case (2) above.
Case 4: û = ũ = 1. Then the term inside the expectation in (A-3) becomes

r(
z∑

k=1

uk+2+w, z+2+v)+r(
z∑

k=1

uk+w, z+v)−r(
z∑

k=1

uk+1+w, z+1+v)−r(
z∑

k=1

uk+1+w, z+1+v) ≤ 0

due to the concavity of r(·, ·). Hence, the result follows.¥
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Proof of Proposition 2: Let λ denote the mean number of daily arrivals and PO(α)
denote a Poisson random variable with mean α. Then,

Ṽ0(p0)
d
= B(Ã0, p0)

d
= PO(λp0), Ṽ1(p0)

d
= B(Ã1, (1− p0)β01)

d
= PO(λ(1− p0)β01),

and

W̃0(p0)
d
= B(Ã0, p0α00)

d
= PO(λp0α00), W̃1(p0)

d
= B(Ã1, (1− p0)α01)

d
= PO(λ(1− p0)α01).

Note that Ṽ0(p0) is independent of Ṽ1(p0) and W̃0(p0) is independent of W̃1(p0) since Ã0 is

independent of Ã1. Let C1(p0) be a random variable such that C1(p0)
d
= PO(λp0(α00−α01))

(note that α00 − α01 ≥ 0), and D1
d
= PO(λα01) be a random variable which is independent

of C1(p0). Also, let C2(p0) be a random variable such that C2(p0)
d
= PO(λp0(1 − β01)),

and D2
d
= PO(λβ01) be a random variable which is independent of C2(p0). Then, using the

fact that the sum of two independent Poisson random variables is another Poisson random
variable, we have

W̃0(p0) + W̃1(p0)
d
= PO(λp0(α00 − α01) + λα01)

d
= C1(p0) + D1

and
Ṽ0(p0) + Ṽ1(p0)

d
= PO(λp0(1− β01) + λβ01)

d
= C2(p0) + D2.

Assumption 1 implies that w(·) is an increasing convex function and r(·) is an increasing
concave function. Let z+ = max{z, 0}. Since the class of functions gs(z) = (z−s)+ for all s ∈
R generates all the increasing convex functions and the class of functions hs(z) = −(s− z)+

for all s ∈ R generates all the increasing concave functions (see Shaked and Shanthikumar
1994), in order to show

E
[
r
(
W̃0(p0) + W̃1(p0)

)
− w

(
Ṽ0(p0) + Ṽ1(p0)

)]

is concave in p0 it suffices to show that

E{−[s− (C1(p0) + D1)]
+}

is concave in p0 for all s ∈ R and

E{[(C2(p0) + D2)− s]+}

is convex in p0 for all s ∈ R, both of which immediately follow from Lemma 2 shown and
proved below. ¥

Lemma 2. Let z+ = max{z, 0}. Suppose that C̃(p) is a Poisson random variable with
mean pθ where p, θ > 0 and A is a random variable that is independent of C̃(p). Then
E{[(C̃(p) + A)− s]+} and E{[s− (C̃(p) + A)]+} are both convex in p for any given s ∈ R.
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Proof: It is sufficient to show that for all a ∈ R, E{[(C̃(p) + A) − s]+|A = a} and E{[s −
(C̃(p) + A)]+|A = a} are both convex in p for an arbitrary s ∈ R. We first show that
E{[(C̃(p) + A) − s]+|A = a} is convex in p for any given a, s ∈ R. This is equivalent to
showing that E{[C̃(p)− s]+} is convex in p for any given s ∈ R.

Now, to show that E{[C̃(p) − s]+} is convex in p, first note that the proof is trivial if
s ≤ 0, and thus we only need to consider s > 0. Denote dse to be the smallest integer that is
larger than or equal to s, and let g(·|λ) be the probability mass function of a Poisson random
variable with mean λ, i.e.

g(i|λ) =

{
e−λ λi

i!
, if i = 0, 1, 2, . . . ,

0, otherwise.

After some straightforward but tedious calculus, one can show that for any s > 0,

d2

dp2
E{[C̃(p)− s]+} = θ2[(s + 1− dse)g(dse − 1|θp) + (dse − s)g(dse − 2|θp)] ≥ 0,

which establishes that E{[C̃(p)− s]+} is convex in p for any given s ∈ R.
Similarly, to show E{[s−(C̃(p)+A)]+} is convex in p for any given s ∈ R, it is sufficient to

show that E{[s−C̃(p)]+} is convex in p for any given s ∈ R. But then since E{[s−C̃(p)]+} =
E{[C̃(p)− s]+ + [s− C̃(p)]} = E{[C̃(p]− s)+}+ s− θp, the result immediately follows. ¥.

Proof of Theorem 1: Let f ∗ denote the policy that schedules all appointment requests
received today for the j∗th day from today where j∗ = arg maxj∈0,1,...,T Ij where Ij is as
described in (12).

First, the long-run average net reward under policy f ∗ is φf∗ = (τα0j∗ − ν1β0j∗)µ. For
almost all sample paths w of {A1, A2, A3, . . . }, we show that, for any arbitrary policy f ,
the long-run average net reward along this path, denoted by φf (ω) , is no larger than
φf∗ . Without loss of generality, we assume that the initial backlog is empty, i.e. X0 =
0. Let Nj(t, ω) be the total number of patients scheduled with appointment delay j days
up to day t along sample path ω under policy f . Now, since the cost and reward are
both linear, we can view the total net reward as the sum of net rewards contributed by
individual patients. Let Rij(t, ω) be the net reward generated by the ith patient of those
Nj(t, ω) patients whose appointment delay is j days along sample path ω up to day t,
i = 1, 2, . . . , Nj(t, ω). Notice that {Rij(t, ω), i = 1, 2, . . . , Nj(t, ω)} is the realization of a
sequence of i.i.d. random variables with mean τα0j − ν1β0j along sample path ω. Let
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J = {j : limt→∞ Nj(t, ω) = ∞}. Then,

φf (ω) = lim
t→∞

∑T
j=0

∑Nj(t,ω)
i=1 Rij(t, ω)

t

= lim
t→∞

1

t

T∑
j=0

Nj(t, ω)

∑Nj(t,ω)
i=1 Rij(t, ω)

Nj(t, ω)

= lim
t→∞

1

t

∑
j∈J

Nj(t, ω)

∑Nj(t,ω)
i=1 Rij(t, ω)

Nj(t, ω)

= lim
t→∞

1

t

∑
j∈J

Nj(t, ω) lim
t→∞

∑Nj(t,ω)
i=1 Rij(t, ω)

Nj(t, ω)

= lim
t→∞

1

t

∑
j∈J

Nj(t, ω)(τα0j − ν1β0j) (by Strong Law of Large Numbers)

≤ (τα0j∗ − ν1β0j∗) lim
t→∞

1

t

∑
j∈J

Nj(t, ω) (by the definition of j∗)

≤ (τα0j∗ − ν1β0j∗)µ (since lim
t→∞

1

t

∑
j∈J

Nj(t, ω) ≤ lim
t→∞

1

t

T∑
j=0

Nj(t, ω) = µ)

= φf∗ .

This completes the proof. ¥.

Appendix B - Derivations of MLEs for αij and βij

From the data obtained from the Department of Family Medicine at the University of North
Carolina, we extracted the following information:
Ci: Number of patients who had an appointment delay of i days but canceled their appoint-
ments on or before their appointment days.
Si: Number of patients who had an appointment delay of i days and showed up for their
appointments.
Mi: Number of patients who had an appointment delay of i days, did not cancel in advance
but missed their appointments.

First, define the following:

qi = P(NS|Tc ≥ i + 1),
ri = P(S|Tc ≥ i + 1),
ui = P(Tc ≤ i).

(A-4)

Note that qi and ri are respectively the probabilities of the “patient no-show” and ”patient
show” events given that the patient does not cancel in the first i + 1 days after the day she
calls for an appointment; ui is the probability that a patient will cancel no later than i days
after she calls for an appointment.
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Clearly, we must have qi + ri = 1 and ui ≤ ui+1, i ∈ {0, 1, . . . , T}. Recall that each
patient’s cancellation and no-show behaviors are independent of those of other patients and
for any appointment made, there are three possible outcomes: the patient cancels any time
on or before the appointment day, the patient misses the appointment without cancellation,
and the patient shows up for the appointment. Let q = {qi}T

i=0, r = {ri}T
i=0 u = {ui}T

i=0.
Then the MLEs for qi, ri, and ui can be obtained by solving the following maximization
problem

max L(q, r,u) =
∏T

i=0 uCi
i [(1− ui)qi]

Mi [(1− ui)ri]
Si

s.t. qi + ri = 1, i ∈ {0, 1, . . . , T},
ui ≤ ui+1, i ∈ {0, 1, . . . , T − 1},
ui ≥ 0, qi ≥ 0, ri ≥ 0, i ∈ {0, 1, . . . , T}.

(A-5)

Suppose that we solve the optimization problem (A-5) and obtain the MLEs q̂i, r̂i, and
ûi for qi, ri, and ui, respectively. Then, we can get the MLEs α̂ij and β̂ij for αij and βij as
follows:

α̂ij =
r̂i+j(1−ûi+j)

1−ûi−1
,

β̂ij =
1−ûi+j−1

1−ûi−1
.

(A-6)

where û−1 = 0 by definition.
However, solving Problem (A-5) is difficult especially since it has too many decision

variables, i.e., there are too many parameters to estimate. Hence, we propose a parsimonious
parametric model, which requires estimating only four parameters. Specifically, assume that
qi, ri, and ui take the following form:

qi = 1− θbi+1, i ≥ −1,
ri = θbi+1, i ≥ −1,

ui =

{
0, i = −1,
1− γai, i ≥ 0.

(A-7)

This model is appealing not only because it is sufficiently simple but also because it has an
interpretation that is quite fitting in the appointment scheduling context. First, note that ui

is the cumulative distribution function for the random variable Tc, i.e. the time between the
patient’s call and the day she cancels (or the day she would cancel if her appointment was
not earlier). Under the parametric form we describe in (A-7), the probability mass function
of Tc is a mixture of two distributions, one being a constant and the other being a geometric
distribution. To be more precise, we have

P(Tc = i) = (1− γ)1{i=0} + γP(Yc = i)1{i≥1},

where 1A is the indicator function and Yc is a geometric random variable with parameter
1− a. One way of interpreting this mixture structure is that there are two different types of
patients: those who cancel on the same day they make their appointments, which constitute
1−γ fraction of the whole patient population, and those who cancel later, which constitute γ
fraction of the whole patient population. Furthermore, the model also implies that for those
who make appointments at least one day before their appointment day, the probability of
cancelling on each day is 1− a independently of everything else. (Note that it is possible to
make similar interpretations for qi and ri as well.)
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Notice that once the probabilities are restricted to be in the form given above, the only
additional condition needed for all the constraints of Problem (A-5) to hold is that 0 ≤
γ, a, θ, b ≤ 1. Let γ̂, â, θ̂, and b̂ denote the MLEs for γ, a, θ, and b, respectively. Then, the
first order optimality condition yields

T∑
i=0

(Ci + Mi + Si) =
T∑

i=0

Ci

1− γ̂âi
,

T∑
i=0

i(Ci + Mi + Si) =
T∑

i=0

iCi

1− γ̂âi
,

T∑
i=0

(Mi + Si) =
T∑

i=0

Mi

1− θ̂b̂i+1
,

T∑
i=0

(i + 1)(Mi + Si) =
T∑

i=0

(i + 1)Mi

1− θ̂b̂i+1
.

This system of nonlinear equations can be solved by one of the standard algorithms
such as Gauss-Newton method or Trust-Region method. Once this solution is found, the
estimates for αij and βij can be determined using the following equations, which are obtained
by simply substituting (A-7) into (A-6):

α̂ij =

{
θ̂b̂j+1γ̂âj if i = 0,

θ̂b̂i+j+1aj+1 if i ≥ 1,

β̂ij =





1 if i = 0, j = 0,
γ̂âj−1 if i = 0, j ≥ 1,
âj if i ≥ 1, j ≥ 1.

Using our data, we found that γ̂ = 0.9297, â = 0.9987, θ̂ = 0.8863, and b̂ = 0.9953. Then,
we numerically verified that this solution is indeed a maximizer. In order to build confidence
for our statistical model, we have also conducted a Chi-square goodness-of-fit test, and we
found that the distribution we proposed can not be rejected at the significance level of 0.01
(the p-value is 0.042).
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