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Appendix A: Proofs of the Analytical Results and the Complete Statement of
Theorem 3

Proof of Theorem 1:
Depending on the server state and the number of scheduled patients in the system, the following events

might occur during (dk+1− (t+h), dk+1− t) (Kulkarni 1995, p. 206):
If no patient is in the system and the server is available at dk+1 − (t+ h), then at dk+1 − t the server

becomes unavailable with probability ηh+ o(h), or stays available with probability 1− ηh+ o(h).
If there is at least one scheduled patient in the system and the server is available at dk+1− (t+h), then

at dk+1 − t the number of scheduled patients in the system is reduced by 1 with probability µh+ o(h), or
the server becomes unavailable with probability ηh+ o(h), or both the number of scheduled patients in the
system and the server state remain unchanged with probability 1−µh− ηh+ o(h).

If the server is unavailable at dk+1− (t+h), then at dk+1− t, the number of patients in the system does
not change, and the server becomes available with probability θh+o(h), or stays unavailable with probability
1− θh+ o(h).
Then, for k= 0,1, . . . ,N , we have

Rk0,0(t+h) = (ηh+ o(h))Rk0,1(t) + (1− ηh+ o(h))Rk0,0(t),

Rk0,1(t+h) = (θh+ o(h))Rk0,0(t) + (1− θh+ o(h))Rk0,1(t),

Rkn,0(t+h) =−(n− 1)cwh+ (µh+ o(h))Rkn−1,0(t) + (ηh+ o(h))Rkn,1(t) + [1− (η+µ)h+ o(h)]Rkn,0(t),

Rkn,1(t+h) =−ncwh+ (θh+ o(h))Rkn,0(t) + (1− θh+ o(h))Rkn,1(t), n= 1, . . . , k.

Letting h→ 0, after some algebra, we have the following:

dRk0,0(t)

dt
=−ηRk0,0(t) + ηRk0,1(t),

dRk0,1(t)

dt
= θRk0,0(t)− θRk0,1(t),

dRkn,0(t)

dt
=−(n− 1)cw +µRkn−1,0(t) + ηRkn,1(t)− (η+µ)Rkn,0(t),

dRkn,1(t)

dt
=−ncw + θRkn,0(t)− θRkn,1(t), n= 1, . . . , k.
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Equations (5) and (6) are then obtained by writing the above differential equations in the matrix form.
To obtain the boundary conditions, we start with the net profit that would be incurred after T . When

there are n ≥ 1 scheduled patients in the system just prior to T and the server is available, the expected
amount of time the system will continue to be operated is E(nX), which is also equal to the expected server
overtime. And the expected total waiting time these n scheduled patients will spend in the system is

E [nX + (n− 1)X + · · ·+X]− n

µ
=
n(n+ 1)

2
E(X)− n

µ
.

If the server is unavailable, the expected overtime and the expected waiting time for each scheduled patient
in the system are increased by 1/θ.

We also need to state the boundary conditions across appointment intervals. Specifically, at time dk,
k = 1,2, . . . ,N , if the kth scheduled patient shows up, the system earns a reward r, the total number of
patients in the system is increased by 1, and the number of pending appointments is decreased by 1. Other-
wise, the system earns no reward, the total number of patients in the system remains unchanged, and the
number of pending appointments is decreased by 1. The server status does not change in either case.

Proof of Theorem 2:
For each k= 0,1, . . . ,N , take the LT of (5) and (6). We have

sR̃k0(s)−Rk0(0+) =ERk0(s),

sR̃kn(s)−Rkn(0+) =−
[
n− 1 0

0 n

]
Cw
s

+AR̃kn−1(s) +BR̃kn(s), n= 1, . . . , k.

Thus,
R̃k0(s) = (sI −E)−1Rk0(0+),

R̃kn(s) = [(sI −B)−1A]R̃kn−1(s) + (sI −B)−1[−
[
n− 1 0

0 n

]
Cw
s

+Rkn(0+)]

= [(sI −B)−1A]n(sI −E)−1Rk0(0+) +

n−1∑
j=0

{[(sI −B)−1A]j(sI −B)−1[−
[
n− 1− j 0

0 n− j

]
Cw
s

+Rkn−j(0
+)]}.

Proof of Theorem 3:
For each k = 0,1, . . . ,N , define Dk

0(t) = eEtRk0(0+), and Dk
n(t) = eBt[

∫ t
0
e−BsADk

n−1(s)ds + Rkn(0+) −
zkn], n = 1, . . . , k. From Theorem 1, it is easy to verify that Rk0(t) = eEtRk0(0+) = Dk

0(t) + zk0 . Let R̄kn(t) =
e−BtRkn(t) and take the derivative on both sides, we then have

dR̄kn(t)

dt
= e−Bt[ARkn−1(t)−

[
n− 1 0

0 n

]
Cw] = e−Bt[ADk

n−1(t) +Azkn−1−
[
n− 1 0

0 n

]
Cw].

(The induction that Rkn−1(t) =Dk
n−1(t) + zkn−1 is used in the above derivation.)

Integrating both sides of the above equation yields R̄kn(t) =
∫ t
0
e−BsADk

n−1(s)ds + Rkn(0+) + (e−Bt −

I)B−1(

[
n− 1 0

0 n

]
Cw − Azkn−1), which implies that Rkn(t) = eBt[

∫ t
0
e−BsADk

n−1(s)ds + Rkn(0+) − zkn] + zkn =

Dk
n(t) + zkn.
To obtain the explicit recursive expression of Dk

n(t), we expand eBt, e−Bt, and eEt in the matrix form.
First, we can write matrices B and E as follows:

B =
θ

b− a

[−a+θ
θ

−b+θ
θ

1 1

][
−a 0
0 −b

][
1 b−θ

θ

−1 −a+θ
θ

]
, E =

1

η+ θ

[
1 η
1 −θ

][
0 0
0 −(η+ θ)

][
θ η
1 −1

]
.

Hence,

eBt =
θ

b− a

[−a+θ
θ

−b+θ
θ

1 1

][
e−at 0

0 e−bt

][
1 b−θ

θ

−1 −a+θ
θ

]
=

θ

b− a
(He−at + Je−bt),

e−Bt =
θ

b− a

[−a+θ
θ

−b+θ
θ

1 1

][
eat 0
0 ebt

][
1 b−θ

θ

−1 −a+θ
θ

]
=

θ

b− a
(Heat + Jebt),

eEt =
1

η+ θ

[
1 η
1 −θ

][
0 0
0 e−(η+θ)

][
θ η
1 −1

]
=

1

η+ θ
(L−Ee−(η+θ)t).
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Having the above expansions, we can further write

Dk
0(t) = eEtRk0(0+) = (L−Ee−(η+θ)t)R

k
0(0+)

η+ θ
, and for n= 1,2, . . . , k,

Dk
n(t) =

θ

b− a
(He−at + Je−bt)(Rkn(0+)− zkn) + (

θ

b− a
)2(He−at + Je−bt)

∫ t

0

(Heas + Jebs)ADk
n−1(s)ds.

Now define, for k= 0,1, . . . ,N , and n= 1, . . . , k,

m0,k
0,0 = q0,k0,0 = [0,0]′, u0,k

0 =
LRk0(0+)

η+ θ
, v0,k0 =

−ERk0(0+)

η+ θ
,

un,kj = (
θ

b− a
)2[H2A

un−1,kj

a+ j(a− b)
+ J2A

un−1,kj

b+ j(a− b)
], j =−n, . . . , n,

vn,kj = (
θ

b− a
)2[H2A

vn−1,kj

a+ j(a− b)− (η+ θ)
+ J2A

vn−1,kj

b+ j(a− b)− (η+ θ)
], j =−n, . . . , n,

mn,k
0,0 =

θ

b− a
H(Rkn(0+)− zkn) + (

θ

b− a
)2{H2A[

n−2∑
j=1

n−2−j∑
i=0

i!

[j(a− b)]i+1
mn−1,k
i,j −

n−1∑
j=−n+1

un−1,kj

a+ j(a− b)

−
n−1∑

j=−n+1

vn−1,kj

−η− θ+ a+ j(a− b)
+

n−2∑
j=0

n−2−j∑
i=0

i!

[(j+ 1)(b− a)]i+1
qn−1,ki,j ]− J2A

n−2∑
i=0

i!(a− b)−(i+1)mn−1,k
i,0 },

mn,k
i,0 = (

θ

b− a
)2[H2A

mn−1,k
i−1,0

i
− J2A

n−2∑
s=i

s!

i!
(a− b)i−s−1mn−1,k

s,0 ], i= 1,2, . . . , n− 1,

mn,k
i,j = (

θ

b− a
)2{−H2A

n−2−j∑
s=i

s!

i!
[j(a− b)]i−s−1mn−1,k

s,j − J2A

n−2−j∑
s=i

s!

i!
[(j+ 1)(a− b)]i−s−1mn−1,k

s,j },

j = 1, . . . , n− 1, i= 0, . . . , n− 1− j,

qn,k0,0 =
θ

b− a
J(Rkn(0+)− zkn) + (

θ

b− a
)2{J2A[

n−2∑
j=1

n−2−j∑
i=0

i!

[j(b− a)]i+1
qn−1,ki,j −

n−1∑
j=−n+1

un−1,kj

b+ j(b− a)

−
n−1∑

j=−n+1

vn−1,kj

−η− θ+ b+ j(b− a)
+

n−2∑
j=0

n−2−j∑
i=0

i!

[(j+ 1)(a− b)]i+1
mn−1,k
i,j ]−H2A

n−2∑
i=0

i!(b− a)−(i+1)qn−1,ki,0 },

qn,ki,0 = (
θ

b− a
)2[J2A

qn−1,ki−1,0

i
−H2A

n−2∑
s=i

s!

i!
(b− a)i−s−1qn−1,ks,0 ], i= 1,2, . . . , n− 1,

qn,ki,j = (
θ

b− a
)2{−J2A

n−2−j∑
s=i

s!

i!
[j(b− a)]i−s−1qn−1,ks,j −H2A

n−2−j∑
s=i

s!

i!
[(j+ 1)(b− a)]i−s−1qn−1,ks,j },

j = 1, . . . , n− 1, i= 0, . . . , n− 1− j.

Note that in the above recursions, un,kj and vn,kj , n= 0,1, . . . , k exist only if−n≤ j ≤ n. Otherwise, their values
are defined to be 0. In the recursions for mn,k

i,j and qn,ki,j , if a sum interval does not exist, the corresponding
sum is defined to be 0. Using the fact that HJ = JH = 0, it can be shown that (the detailed algebra is
omitted for brevity)

Dk
0(t) = u0,k

0 + v0,k0 e−(η+θ)t +m0,k
0,0e

−at + q0,k0,0e
−bt,

Dk
n(t) =

n∑
j=−n

un,kj ej(a−b)t +

n∑
j=−n

vn,kj e(−(η+θ)+j(a−b))t +

n−1∑
j=0

n−1−j∑
i=0

mn,k
i,j t

ie−(a+j(a−b))t

+

n−1∑
j=0

n−1−j∑
i=0

qn,ki,j t
ie−(b+j(b−a))t, n= 1,2, . . . , k.

Proof of Proposition 1:
Denote the length of an ‘off’ period by Y . Then Y has a phase-type distribution with Laplace-Stieltjes

transform α(M − sI)−1Me and mean −αM−1e. Conditioning on whether or not the service of a scheduled
patient is interrupted for at least once, we have

X̂ =

{
exp (η+µ) w.p. µ

η+µ
,

exp (η+µ) +Y + X̂ w.p. η

η+µ
,
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which yields E(X̂) = 1
µ

(1− ηαM−1e). It can be shown by induction that αM−1e=−( 1
θ

+ η

θ2
+ . . .+ ηm−1

θm
).

Hence E(X̂) = 1
µ

(1 + η

θ
+ . . .+ ηm

θm
) =

θ(1−( η
θ
)m+1)

µ(θ−η) .

Now, let G̃(s) =E(e−sX̂) denote the Laplace-Stieltjes transform of X̂. Then we have G̃(s) = µ

η+µ
η+µ
s+η+µ

+
η

η+µ
η+µ
s+η+µ

α(M − sI)−1MeG̃(s). When m = 1, the length of each ‘off’ period is exponentially distributed,

therefore α(M −sI)−1Me reduces to θ
s+θ

. In this case, G̃(s) = µ(s+θ)

s2+(η+µ+θ)s+θµ
= µ(s+θ)

(s+a)(s+b)
, where a and b are

given by Equations (2) and (3) respectively. Hence Equation (1) follows by inverting G̃(s).

Appendix B: Explanation of the Error in Wang (1994)

In this section, we provide an explanation as to why the analysis in Wang (1994) is incorrect. Specifically,
the problem has to do with Equation (5) on page 663 of the paper. On the right hand side of the equation,
the first component of the vector reads Ai(tn)Fin−1(xn) which implicitly assumes that the event that the
server is operational (or not) at the release time of the nth job is independent of the event that the service
of the n− 1th job is finished before the release time of the nth job (the system is empty when the nth job
is released), which is not the case. Below, we provide a more detailed explanation by using an example.

Suppose a server is operational at time 0 and two jobs are to be released and served by that server. The
first job is released at time 0 and the second job is released at time t. The job processing time, the server
operational time (‘on’ period), and the server repair time (‘off’ period) are independent and exponentially
distributed with rates µ, η, and θ, respectively. First, we would like to compute pj(t), the probability that
the service of the first job finishes before t, the release time of the second job, and the server is in state j at
t, where j = 0 indicates that the server is operational and j = 1 indicates that the server is in repair.

Denote rij(k, t), k = 0,1, . . ., to be the probability that the services of exactly k jobs finish during (0, t]
and the server is in state j at time t given that the server is in state i at time 0. Then pj(t) =

∑∞
k=1 r0j(k, t).

Denote r(k, t) =

[
r0,0(k, t) r0,1(k, t)
r1,0(k, t) r1,1(k, t)

]
. Similar to the differential equations derived in Theorem 1, we can show

the following:

dr(0, t)

dt
=

[
−(η+µ) η

θ −θ

]
r(0, t),

dr(k, t)

dt
=

[
µ 0
0 0

]
r(k− 1, t) +

[
−(η+µ) η

θ −θ

]
r(k, t), k≥ 1.

Recall that A =

[
µ 0
0 0

]
, and B =

[
−(η+µ) η

θ −θ

]
. Taking the LT on both sides of the above differential

equations, we have sr∗(0, s)− I =Br∗(0, s), and sr∗(k, s) =Ar∗(k−1, s) +Br∗(k, s), k≥ 1. Hence, r∗(0, s) =
(sI −B)−1, and r∗(k, s) = [(sI −B)−1A]k(sI −B)−1, k ≥ 1. Thus

∑∞
k=1 r

∗(k, s) = {[I − (sI −B)−1A]−1 −
I}(sI−B)−1. Inverting it yields a 2×2 matrix, where the (j+ 1)th component in the first row is the desired
pj(t), j = 0,1.

On the other hand, from Equation (1), we know that the probability that the service for the first job
finishes before t is G(t) = µ[ θ−a

a(b−a) (1− e−at) + b−θ
b(b−a) (1− e−bt)]. Also, since the state of the server at time t

follows a continuous-time Markov chain with state space {0,1}, the probability that the server is operational
at t is given by η

η+θ
e−(η+θ)t + θ

η+θ
(Kulkarni 1995, p. 260). Given any set of model parameters, one can

easily check to see that p0(t) 6=G(t)[ η

η+θ
e−(η+θ)t + θ

η+θ
]. For example, when µ= 1, η= 0.1, θ= 0.5, and t= 1,

p0(t) = 0.5816 while G(t)[ η

η+θ
e−(η+θ)t + θ

η+θ
] = 0.5649.

Thus, the event that the server is operational at the release time of the second job and the event that the
service of the first job is finished before the release time of the second job (the system is empty when the
second job is released) are not independent.
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