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e consider an appointment-based service system (e.g., an outpatient clinic) for which appointments need

to be scheduled before the service session starts. Patients with scheduled appointments may or may not
show up for their appointments. The service of scheduled patients can be interrupted by emergency requests that
have a higher priority. We develop a framework that can be utilized in determining the optimal appointment
policies under different assumptions regarding rewards, costs, and decision variables. We propose two methods
to evaluate the objective function for a given appointment schedule. We specifically consider two different
formulations, both of which aim to balance the trade-off between the patient waiting times and server utilization
and carry out a numerical study to provide insights into optimal policies. We find that policies that ignore
interruptions perform quite badly, especially when the number of appointments to be scheduled is also a
decision variable. We also find that policies that require equally spaced appointments perform reasonably well
when the interruption rate is constant. However, their performance worsens significantly when the interruption
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rate is time dependent.
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1. Introduction
In healthcare, appointment systems mainly work to
regulate the patient demand for various services.
They help reduce the variability in the patients’
arrival process so that patients wait less and the sys-
tem is kept highly utilized. Clearly, however, it is
not possible to eliminate the variability completely.
Patients may arrive earlier or later than their sched-
uled appointment times, or they may simply not
show up at all. It may take longer than expected to
serve a particular patient, or the service can be inter-
rupted for various reasons, including arrivals of emer-
gency patients who need to be attended to right away.
Some of these factors have been considered within
the large and growing body of work on appointment
scheduling, but to the best of our knowledge, little
attention has been paid to how to schedule appoint-
ments when the scheduled service can be interrupted.
The objective of this paper is to fill this gap in the liter-
ature by proposing methods for determining appoint-
ment times in the presence of service interruptions,
evaluating the importance of incorporating service
interruptions in the decision models, and identifying
the structural properties of the optimal policies.
Service interruptions are prevalent in many service
systems, and the formulation we consider in this
paper does not have any features that make it exclu-
sively appropriate for a specific setting. Therefore,
the results in this paper are relevant to a wide class

of appointment-based service systems. However,
we are primarily motivated by applications from
healthcare, where service interruptions are mostly
caused by emergency patients who need immediate
attention. For example, physicians and dentists can
be called to attend to or to be consulted for emer-
gency patients (see, e.g., Kenny and Barrett 2005,
Alderman 2011). Many healthcare clinics of various
specialties and dental offices warn their patients in
advance that in case of emergencies, they may expe-
rience longer waiting times (see, e.g., http://www
nwh.org/clinical-centers/spine-center/patient-faq/,
http://www.northfultonpediatrics.com/policies, http://
princetonpediatricdentist.com/fags). In fact, interrup-
tions to scheduled appointments are not necessarily
caused by patients in need of immediate attention.
According to Klassen and Yoogalingam (2008), such
interruptions may include calls from other doctors
or pharmacists and problems that require dealing
with the administrative staff. The interrupted process
can also be the service provided by a diagnostic
machine. Typically, patients make appointments
for access to computerized tomography (CT) scans
or magnetic resonance imaging (MRI) machines at
hospitals. However, frequently, emergency physicians
find it necessary to use these machines for emergency
patients who cannot “afford” to wait. Such patients,
when sent for a diagnostic scan, get higher priority
than and cause additional delays for the regular
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patients who have scheduled appointments (see,
e.g., Green et al. 2006). Recent studies suggest that
the rate of such emergency use of these machines
is quite high and has been increasing significantly
over the last years. For example, Korley et al. (2010)
conducted a national survey of patient visits to
emergency departments within the United States and
found that the percentage of emergency department
visits that required the use of CT scan or MRI
increased from 6% in 1998 to 15% in 2007. Broder
and Warshauer (2006) analyzed adult patient data
from the emergency department of a university
hospital. They found that from 2000 to 2005, the adult
emergency department volume increased by 13%;
head CT scans increased by 51%, cervical spine CTs
by 463%, chest CTs by 226%, abdominal CTs by 72%,
and miscellaneous CTs by 132%. These numbers
clearly show the significant increase in the use of
the CT scan at this hospital over a five-year period.
The authors have also observed that except for the
abdominal CT, which seemed to level off over the
last year of the five-year period, the numbers of all
types of CT scans have consistently increased at a
rate higher than that for the adult patient volume.
Another study carried out at the emergency depart-
ment of the HealthAlliance Hospital in Leominster,
Massachusetts, found that roughly half of the patients
who go through the radiology department originated
from the emergency department and that these
patients were given top priority for access to radiol-
ogy services with no delay (Anderson et al. 2010).
The disruption of regularly scheduled appointments
by emergencies could be prevented if emergency
departments had dedicated diagnostic machines.
However, because it is prohibitively costly to have
a separate diagnostic machine for the exclusive use
of emergency patients, this solution is not feasible
for most hospitals. Therefore, these machines are
typically shared by regular patients, who schedule
appointments in advance, and emergency patients,
who come without appointments and get higher
priority, and there is usually a strong incentive to
keep them as highly utilized as possible (see Green
et al. 2006).

Earlier work on appointment scheduling has pro-
vided many useful insights on how appointments
should be scheduled over a given period of time
when there are no interruptions to the service process.
However, it is not known whether or how explicit
consideration of interruptions (e.g., emergency cases)
would change these earlier insights. One of the objec-
tives of this paper is to investigate this question. For
example, we know that when the service times are
independent and identically distributed, and there are
no interruptions to the service process, the optimal
scheduling policy has a “dome” shape, meaning that

the times between consecutive appointments that are
scheduled early or late in the day are small, whereas
the times between those scheduled midday are larger
(see Hassin and Mendel 2008). We also know that
requiring the time between any two consecutive
appointments to be the same does not degrade the
policy performance significantly (see Stein and Coté
1994). The question is whether these observations are
valid in the presence of interruptions as well. When
there are interruptions, does the optimal policy still
have a dome shape, and does the optimal policy
under the restriction that appointments are scheduled
at equally spaced intervals perform sufficiently well?
Perhaps there is no good reason to suspect that the
answers to these questions would be any different
when emergency cases arrive with some fixed rate,
but what if the rate changes depending on the time
of the day? For example, the rate of arrivals to emer-
gency departments is known to be time dependent,
which means that the arrival rate of emergencies to
the diagnostic machines is also very likely to be time
dependent. In such cases, one can see that insisting
that the appointments be equally spaced could be
more “costly,” as it might make more sense to sched-
ule fewer appointments around the times when the
arrival rates of emergency cases are higher.

In this paper, we first develop an appointment-
scheduling model that differs from prior models
mainly in that the service of regularly scheduled
patients can be temporarily suspended because of
interruptions. Our model can be seen as a general-
ization of the model of Hassin and Mendel (2008),
who implicitly assumed that there are no interrup-
tions. We assume that interruptions occur according
to a Poisson process, but we allow the interruption
rate to change with time. This is one of the important
features of our formulation, as it fits nicely with our
motivating applications. The complexity of our for-
mulation makes it very difficult if not impossible to
characterize the optimal policy analytically. This is not
surprising, because even for the simpler case, where
there are no interruptions, Hassin and Mendel (2008)
resort to numerical analysis to generate insights on
the problem. In fact, even a simple computation of the
objective function for a given appointment schedule
is a significant challenge in our optimization prob-
lem; therefore, the core of our analysis is devoted to
the question of how this computation can be done.
In particular, the computation requires the solution of
a system of differential equations, which is not readily
available. However, we provide two different meth-
ods, either of which can be used to find a solution and
thus compute the objective function. After developing
these solution methods, we use them for a numerical
study to quantify the potential benefits of incorpo-
rating the interruption process into the formulation,
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we then investigate how explicit consideration of
interruptions influences the key insights on optimal
appointment scheduling. We find that ignoring inter-
ruptions when they are in fact prevalent can result in
appointment schedules that demonstrate significantly
worse performances.

The remainder of this paper is organized as fol-
lows: Section 2 gives a review of the related literature.
In §§3 and 4, we introduce the formulation. In §5, we
develop the two methods that can be used to compute
the objective function. Section 6 demonstrates how the
method for computing the objective function can also
be used in computing the expected patient waiting
time and server overtime. In §7, we show how our
formulation can be generalized to allow the interrup-
tion time to have a phase-type distribution. Section 8
provides our numerical results. Finally, we conclude
with §9.

2. Literature Review

The operations management literature on appoint-
ment scheduling is vast and rapidly expanding. For
an extensive review of this literature, as well as dis-
cussions on directions for future research, we refer
the reader to Cayirli and Veral (2003) and Gupta and
Denton (2008). Here, we only mention those papers
that are either very closely related to this paper or
very recent.

Gupta and Denton (2008) propose a useful classi-
fication scheme for appointment-scheduling models,
depending on the type of waiting that is formu-
lated. They define a patient’s direct waiting time as the
time the patient spends in the clinic on the day of
his appointment and indirect waiting time as the time
between the patient’s call for an appointment and
the scheduled appointment time. There is some rela-
tively recent work on indirect waiting (see Gupta and
Wang 2008, Green and Savin 2008, Liu et al. 2010),
but the vast majority of the papers focus on perfor-
mance measures related to direct waiting. This paper
also contributes to this literature.

When determining appointment times on a given
day, there are a number of objectives, including keep-
ing the server (e.g., physician) busy, keeping wait-
ing times short, and avoiding or minimizing overtime.
Papers that deal with direct waiting time typically con-
sider one or more of these objectives, in many cases
by minimizing an objective function that is a weighted
sum of a subset of these various performance mea-
sures (weighted by their relative “costs”) and/or
adding them as constraints into the formulation. For
some examples, see Bailey (1952), Fries and Marathe
(1981), Wang (1997, 1999), Denton and Gupta (2003),
Kaandorp and Koole (2007), Robinson and Chen
(2003), Muthuraman and Lawley (2008), Chakraborty
et al. (2010), and Jouini and Benjaafar (2012).

The three papers that appear to be the closest to
our work are Pegden and Rosenshine (1990), Stein
and Coté (1994), and Hassin and Mendel (2008). These
three papers consider models that are special cases
of our model. Pegden and Rosenshine (1990) obtain
a closed-form solution for the optimal schedule for
the case where there are only two appointments; they
develop a method to compute the optimal schedule
for the general case with more than two appoint-
ments. What is mainly different in the model of
Pegden and Rosenshine (1990) (with respect to our
formulation) is that all customers show up for their
appointments and the service process never gets
interrupted. Stein and Coté (1994) mainly build on
Pegden and Rosenshine (1990) and study the effect of
requiring equally spaced appointment times. On the
other hand, Hassin and Mendel (2008) generalize the
model of Pegden and Rosenshine (1990) by allowing
no-shows. They carry out a numerical study and gen-
erate insights on the structure of the optimal appoint-
ment policy, the importance of modeling no-shows,
the effects of no-shows on the optimal policy and
its performance, and the “cost” of forcing equidistant
appointments. We generalize the model of Hassin and
Mendel (2008) by allowing the service of scheduled
patients to possibly be interrupted. In our analysis, we
mainly investigate the importance of modeling inter-
ruptions and how their existence changes the main
insights obtained earlier in the literature, mostly in
these three papers.

Although, in general, limited work on interrup-
tions has appeared within the context of appoint-
ment scheduling, we are aware of three other papers
that share our primary motivation, as they also deal
with service interruptions at outpatient clinics and
diagnostic machines. However, these papers use com-
pletely different analytical techniques and/or struc-
turally different formulations. In particular, Klassen
and Yoogalingam (2008) study nonemergency physi-
cian interruptions in an outpatient clinic using sim-
ulation optimization. Fiems et al. (2012) develop a
queueing model and carry out steady-state analy-
sis to investigate the impact of emergency requests
on the waiting time of regularly scheduled patients
in the radiology department. On the other hand,
Vasanawala and Desser (2005) develop a simple math-
ematical model to obtain the number of schedule
slots to leave open for emergency CT scan or ultra-
sonography requests.

There are also papers (many from the traditional
job-scheduling and queueing literature) that analyze
models in which the service might get interrupted
because of a server failure or vacation. However,
with one exception, which we discuss below, these
papers make assumptions that do not fit well with
the appointment-scheduling problem. For example,
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Federgruen and Green (1986), Takine and Sengupta
(1997), and Gray et al. (2000) all consider queueing
models in which the server can go on and off, but
they assume that customers arrive according to some
stationary process (e.g., Poisson) and carry out steady-
state analysis. Glazebrook (1984), Adiri et al. (1989),
and Birge et al. (1990), on the other hand, assume that
all jobs are available to be processed at the begin-
ning of the service session and the decision to be
made is the order in which these jobs will be pro-
cessed. One exception from the job-scheduling lit-
erature is Wang (1994), who develops an algorithm
that determines the optimal release times of a finite
number of jobs to an unreliable machine. His model
is in fact almost the same as ours, with one dif-
ference being our consideration of the possibility of
no-shows. However, there is one important error in
the analysis of Wang (1994) that affects the resulting
expressions and methods significantly. The error is
related to the author’s implicit independence assump-
tion in the derivation of an equation when, in fact,
there is dependence. We provide details on this in
Appendix B of the online supplement (available at
http://dx.doi.org/10.1287 /msom.1120.0394).

3. Model Description

The methodology we use in this paper can be used in
a variety of formulations that consider the schedul-
ing of a finite number of appointments over a finite
or infinite horizon. We consider two such formula-
tions, one of which has received significant atten-
tion in the literature, but with the restriction that
there are no service interruptions. To keep the pre-
sentation simple, we introduce the models assuming
that interruptions occur according to a homogeneous
Poisson process. In §8, we explain how our analysis
can easily be extended to the case where interrup-
tions occur according to a nonhomogeneous Poisson
process, and we provide numerical results under that
generalization.

3.1. Model I: Restricted Scheduling Horizon

Suppose that there is a predetermined scheduling
horizon [0, T] where T < . At time zero, we need
to decide N, the number of appointments to be
scheduled over this time interval, as well as the
times for these N appointments. We define d, as the
appointment time scheduled for the kth patient, k =
1,2,...,N. The vector d=(d,, d,, ..., dy), where 0 <
dy<d,<---<dy<T,is called a schedule for these N
patients. Scheduled patients either show up punctu-
ally at their appointment times with probability p or
become no-shows in an independent manner. Patients
who show up are served on a first-come first-served
basis. The service times for patients are assumed to be
independent and identically distributed according to

an exponential distribution with mean 1/u. However,
services can be interrupted by certain events, which
we assume to occur according to a Poisson process
with rate 1. Once the server is interrupted, it stays in
that stage for an amount of time that is exponentially
distributed with rate 6, and during that time any new
interruptions are assumed to have no effect. In §7,
we show how the exponential distribution assump-
tion on the interruption times can be relaxed by allow-
ing them to have a phase-type distribution, which
also makes it possible to model more explicit connec-
tions between interruption events and the interrup-
tion durations (e.g., explicit modeling of emergency
patients who queue up). The service for scheduled
patients is preemptive resume; that is, the service
for a scheduled patient is suspended immediately
in the presence of interruptions and resumes with
no loss of work when the server becomes available
again.

It might be helpful to think of the whole service
horizon as a sequence of “on” and “off” periods. Dur-
ing the “on” periods, the server is available to work
on regularly scheduled patients. During the “off”
periods, the server is not available and is engaged
in other activities, such as attending to emergency
patients. At time zero, the server is available for
serving scheduled patients; that is, the service ses-
sion starts with an “on” period. An interruption ends
this “on” period and starts an “off” period, during
which no scheduled patients can be served. Once this
period is over, the server becomes available for sched-
uled patients again and another “on” period starts.
The server status alternates between these “on” and
“off” states until the services of all the scheduled
patients who show up are completed. Even though
all appointments need to be scheduled some time
between 0 and T, it is possible that some of the sched-
uled patients will be served after time T. Note that,
even after time T, services of the regular patients
can still be interrupted. However, if all the scheduled
patients who show up are served by T, the server is
turned off and no more interruptions occur.

The system incurs the waiting cost from scheduled
patients (the waiting time of a scheduled patient is the
total time the patient spends in the system minus the
time in service) and the server overtime cost if the ser-
vice completion time of all the patients who show up
is later than T. We use c,, to denote the patient wait-
ing cost per unit of time and ¢, to denote the server
overtime cost per unit of time beyond T. In addi-
tion, the system earns a reward r from each scheduled
patient who receives service. The objective is to find
the optimal policy (N*, d*) to maximize II(N, d), the
total expected net profit, which is the reward from
serving scheduled patients minus the patient waiting
and the server overtime cost.
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3.2. Model II: Unrestricted Scheduling Horizon
Model II makes the same assumptions as Model I
regarding patients” service times, no-show behavior,
and service interruption process, but differs from
Model I in a few important aspects. Most importantly,
N, the total number of appointments to be sched-
uled, is not a decision variable and there is no restric-
tion on when these N appointments can be scheduled
(i.e.,, T = o0). In other words, the number of appoint-
ments to be scheduled is given and the decision to be
made at time zero is at what time to schedule these
appointments. The system keeps operating until the
appointment time assigned to the Nth patient or the
service completion time of the last patient who shows
up, whichever is later. We consider two types of cost:
C,, as defined in Model I, and ¢, the cost of operat-
ing the system per unit of time (service availability
cost). The objective is to find the optimal schedule d*
for these N patients to minimize the total expected
cost. Note that this model reduces to the model of
Hassin and Mendel (2008) if we assume that there are
no service interruptions and the server is available
at all times; it reduces to the model of Pegden and
Rosenshine (1990) if we further assume that (in addi-
tion to the no interruption assumption) all patients
show up for their appointments.

4. Complete Description of the

Optimization Problem

In this section, we provide a more complete descrip-
tion of the optimization problem for Model I. It is
important to note that the treatment of the opti-
mization problem in Model II is similar, with some
minor differences; therefore, we skip it for brevity.
The proofs of all the analytical results are given in
Appendix A of the online supplement.

4.1. Formal Statement of the Optimization
Problem

Our optimization problem can briefly be stated as

follows:

max II(N, d)
N,d
st. 0<d,<d,<---<dy=<T,

where II(N, d) is the total expected net profit.

An analytical characterization of the optimal pol-
icy does not appear to be possible because of the
complexity of the problem. Therefore, a more realistic
goal, which we pursue in this paper, is to develop a
numerical solution method. In fact, even the compu-
tation of the objective function II(N, d) is a signifi-
cant challenge because it does not have a closed-form
expression. We can, however, obtain II(N, d) by solv-
ing a system of differential equations, as we demon-
strate in the following.

4.2. Effective Service Time

Even though the time it takes to serve a sched-
uled patient has an exponential distribution, the time
between the start of a given patient’s service and its
end, called the effective service time, is not exponen-
tially distributed because of the possibility of inter-
ruptions. Let X be the effective service time of a
scheduled patient who shows up, and let G(t) =
P{X < t}. Recall that 7 is the Poisson arrival rate of
interruptions, 1/u is the mean service time, and 1/6
is the mean interruption time. One can show that (see
the proof of Proposition 1 in Appendix A of the online
supplement)

G =1-B)(1—e™)+p(1—c), ey
where B=(uw—a)/(b—a), and

a=3[n+u+0+vn+ut0?—46u]>0, (2)
b=3[n+p+6—V(n+p+6)—46u]>0  (3)

Hence, X is a mixture of two exponential distributions
and its mean is given by

E(X) =/ (1—G(b)dt = ”0—“’ )
0 ®
4.3. Recursive Expression for the
Objective Function

In this section, we derive the system of differen-
tial equations, which needs to be solved to evalu-
ate the objective function 1I(N, d). To that end, first
denote the server state by 0 if it is available for
scheduled patients and by 1 if not. Let 4, =0 and
dy,1 = T. Also define the net profit function associ-
ated with each appointment interval [d,,d,,;), k =
0,1,...,N as follows: 0 <t <d;, —d, R ,(t) is the
total expected net profit earned by operating the sys-
tem over [d, ,; —t, o) if at time d,; — t there are
n scheduled patients in the system and the server
is in state i, where n=0,1,...,k, and i =0,1. We
assume that the server is available for scheduled
patients at time zero, and thus R{ ((d,) is the net profit
the system earns over [0, c0). Consequently, we have
TN, d) = R o(d))-

To obtain R{ (d;) (or TI(N, d)), we first need to
characterize the expected net profit function R} .(f)
for each k=0,1,...,N and for t € (0, d;; — d,], that
is, between any two consecutive appointment times,
in the interior of the appointment interval. In addi-
tion, we need to establish how R! (f) for different
values of k, n, and i are related. To do this, for each
k=0,1,...,N,n=0,1,...,k, and t € (0, d,,; — d;],
denote

dR} ,(t)
RE(F) = R}, o(b) dRE(H) —a
LR () dt | drE (1)

dt
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Also let obtained, we only need its values on t € (0, d;; — d,].
Let Rl(s) denote the LT of R(-) for k=0,1,...,N

A=|:M O], B:[—(”’H‘M) n :|, and n=0,1,...,k. Then we can show that Rf(s)

00 0 —0 can be obtained recursively as stated in the following

_|—m n _| Cw
E_[ 0 _0:|, and Cw—|:Cw:|.
We can prove the following theorem.

THEOREM 1. Foreach k=0,1, ..., N, the vector of the
net profit functions RX(t), 0 < t < d,,, — d,, satisfies the
following differential equations:

dR§(t)
a5~ ERo(d), ©)
dR} () n-1 0 k k
T=_[ . n:|Cw+ARn_1(t)+BRn(t),

n=1,....,k, (6)
with boundary conditions

Rp4(07) =Ry, (09) =0, 7)

n(n+1)
2

Rﬁo«ﬁ>==—an(X>—cw[ E(X)—-g},

n=1,...,N, (8)
R} (0%) = —c,(% +nE(X)>

c n+n(n+1)
‘Lo 2

Hm—f}
“
n=1,...,N, (9)
R’;l,i(0+) = P(” + Rﬁﬂ,i(dkﬂ - dk+1))
+ (1 - p)er(:—il (dk+2 - dk+1)r
k=0,1,...,N—-1,n=0,...,k,i=0,1. (10)

Theorem 1 states the differential equations that the
functions RX(-) need to satisfy, but the solution to
these equations is not directly available. In §5, we
describe how to solve them.

5. Two Methods for Computing the

Objective Function
In this section, we propose two methods, the method
of Laplace transform (LT) and the method of integrat-
ing factor, both of which can be used to evaluate the
objective function, II(N, d), for given N and d.

5.1. Method I: Using Laplace Transforms

For each k =0,1,...,N, Ri(t) is defined on t €
(0, dyq — d;]. To apply the method of LT, the domain
of Rk(t) is extended to be t € (0, ). After R(t) is

theorem.

THEOREM 2. For each k=0,1,..., N, we have
RE(s) = (sI — E)'R§(0), (11)
RE(s) =[(sI — B) ' A]"(sI — E)"'RE(0™)

+ f { [(sT—B)A]'(sI —B)™*
j=0

[ 2 g o))
n=1,...,k, (12)

where R§(0%) and R} (0%), j=0,...,n —1, can be
obtained using the boundary conditions (7)—(10).

For a given schedule d = (d;, d,, ..., dy), Theorem 2
suggests a recursive procedure that can be used to
obtain the LT R¥(s) for each k=0,1,...,N and n =
0,1, ..., k, which can then be inverted to obtain Rﬁ(t).
In particular, R ((t) is equal to II(N, d) for t =d,. The
following algorithm is a detailed description of this
recursive procedure.

Algorithm 1

Step 1. Initialize: Set k = N. Compute E(X), the
expected length of the effective service time, and use
(8) and (9) to evaluate RN(0*) for n=0,1,...,N.

Step 2. Apply (11), (12), and the boundary con-
straint (10) to compute R¥(s), the LT of RE(t), for n =
0,1,..., k.

Step 3. For each n =0,1,...,k, invert Rf(s) to
obtain R(t) and evaluate its value at t = d,,; — dy,
which will be used in Step 2 of the next iteration.

Step4. If k >0, set k =k —1 and go to Step 2.
Otherwise, stop. The objective function II(N,d) =
R{ o(d;) has been obtained in the last iteration of the
algorithm.

In Step 3 of the algorithm, R(s) needs to be
inverted to obtain R%(t). It can be shown that all the
terms appearing in (11) and (12) are rational functions
of s. Hence, one can use the method of partial fraction
decomposition (see Horowitz 1971) to invert RX(s) to
obtain Rk(t) for k=0,1,...,N and n=0,..., k. The
details are omitted for brevity.

5.2. Method II: Using an Integrating Factor

An alternative and more direct way of determining
the solution to the system of differential equations
given in Theorem 1 is to use the method of inte-
grating factor. According to this method, we multiply
both sides of (6) by e~?, the “integrating factor,” and
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solve the differential equations. The use of this solu-
tion method for solving differential equations leads
to the following theorem, which suggests a recursive
procedure that can be used to determine Rf(t), k =
0,1,...,Nand n=0, ..., k.

THEOREM 3. Let

—a+0 n
H=| b00 ’
1 hl
0
b—6 -1
0 6 0 7
= , and L= ,
J —a+0 [0 17:|

-1

0

where a and b are given by (2) and (3), respectively. For
each k=0,1,...,N, and n>0,

RE(H=DE(t)+25, n=0,1,...,k,

where z¥ and DE(t) are given as follows:

z5=10,0],

zﬁ:B-l([”al 2:|Cw—Az’;1>, n=1,2,...,k,

kegy 4,0k 0,k ,—(n+6)t 0,k ,—at 0,k —bt
Dy(t) =uy" +vy"e + Mg g€ " o€

n n
Dy(ty= Y u?’kef(”"’)f+ 3 U;?'ke[—(n+9)+j(u—b)]t

J=—n j=—n

n—1n—-1-j L
n, ki — j(a—Db)]t
+Z Z mi,j o latj(a=b)]
j=0 =0
n—1n—1-j . .
+> ) qf'jkt’e*[bﬂ(b’“”f, n=1,2,..., k.
j=0 i=0

In the above equations, mgg = qgl’(',‘ =[0,0],

LR, ((0*
Lok _ LRy (0)

0,k _ ~ERo,(07)
0 n+6

7 0 ’T]+0

4

and u;-"k, v;-"k, mZ’jk, q}f'jk, n=1,...,k, can be obtained
recursively, as described in Appendix A of the online

supplement.

The statement of Theorem 3 is not complete because
the recursive expressions for u;l’k, v?’k , m?l’jk, and q;f’jk
are not provided. We provide these long expressions
in Appendix A of the online supplement as part of
the complete statement of this theorem along with
its proof.

6. Computing the Expected Patient

Waiting Time and Server Overtime

The expected waiting time of each patient with
a scheduled appointment and the expected server
overtime are not obtained explicitly when the opti-
mization problems for Models I and II are solved.
However, one could easily come up with alternative
formulations in which one may want to put con-
straints such as keeping the maximum expected wait-
ing time or the server overtime below a certain level
while maximizing or minimizing a particular objec-
tive. Here we show that our methodology can be
used to compute such performance measures as well,
because our reward function reduces to the patient
waiting time or the server overtime when model
parameters are set appropriately.

Given a schedule d = (4, d,, ..., dy), suppose we
want to compute the expected waiting time of the kth
scheduled patient if he shows up, 1 <k < N. Note
that the waiting time of the kth patient depends only
on the schedule of the first k — 1 patients. Hence, the
problem of finding the mean waiting time of the kth
patient (assuming he shows up) can be formulated
as a modified version of the original problem. Specif-
ically, consider the first k patients, the schedule of
whom is a subvector of d—that is, (d,, ..., d,_q, d}),
set r = c,, = ;= 0—and change boundary constraints
(8) and (9) to RE(0%) = (n + DEX) — 1/u, n =
0,1,...,k =1, and RE](07) =1/60 + (n + 1)E(X) —
1/m, n=0,1,...,k—1, respectively.

By making the above changes and keeping every-
thing else in Model I unchanged, the system incurs
no cost or reward from the first k — 1 patients, but
only from the waiting time of the kth patient at rate 1.
Thus, in this case, R] ;(d;) is the expected waiting
time of the kth patient if he shows up.

To compute the expected server overtime, we
need to set r = ¢, =0 and ¢; = —1 in the original
model. Then Rf () is equal to the expected server
overtime.

7. An Extension on the Interruption

Time Distribution

Models I and II both assume that once the server is
interrupted, it stays “off” for an exponentially dis-
tributed amount of time. In this section, we show how
we can generalize our formulation so that the length
of each “off” period has a phase-type distribution (see
Fackrell 2009). To keep the presentation simpler and
highlight one way of using this generalization, we
focus on a specific phase-type distribution. However,
generalization to any phase-type distribution would
be similar.

Specifically, each “off” period is modeled as a
continuous-time Markov chain with the state space
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{0,1,2, ..., m}, where state 0 represents the absorbing
state that indicates the end of an “off” period. The
“off” period starts at state 1 and has the following
rate matrix:

00 0 0 0...0 07
o —(0+m) 1 0 0--00
0 0 —(0+m7) ] 0---00

Q=10 o 9 —(@O0+m) -0 0
0 0 0 0 0--6—6

The reason for choosing this particular matrix is
that this transition rate matrix naturally arises if we
assume that the service time of an individual emer-
gency patient has an exponential distribution and
emergency patients who find the server busy with
another emergency patient join the emergency queue,
which has some finite capacity of m. We can, in fact,
choose a more general form for this matrix and thus
allow the interruption time to have any phase-type
distribution. In particular, we can easily generalize
our analysis to the case where the rate 6 becomes
phase dependent, which would allow us to capture
possible changes in service speed depending on the
number of emergency patients waiting.

Then the length of the service “off” period has
a phase-type distribution denoted by (a, M), where
a=[1,0,...,0], being an m-dimensional vector, and
M is the submatrix of Q, corresponding to the
states in {1,2,...,m} (see Neuts 1981 for more on
phase-type distributions). Define X as the effective
service time. Its mean is given by the following
proposition:

ProrositioN 1. We have

01— (n/0)"")

E(X)= w6 —mn)

7

where X denotes the effective service time for a random
patient with a scheduled appointment.

When m =0, which corresponds to the case where
there are no interruptions, the expected effective ser-
vice time simplifies to E (X) =1/u, the mean service
time for a scheduled patient. On the other hand, when
m =1, the expression simplifies to (4), the expected
effective service time when the interruption takes an
exponentially distributed amount of time.

For each k=0,1,...,N, define Ii’;’i(t),0<t§dk+1—dk,
as the total expected net profit over [d; —t,00)
if at time d, ,—t there are n scheduled patients
in the system, and the server is in state i, where

n=0,1,...,k,i=0,1,...,m. Also define

[ dRE (1) ]
N0 A
RS () aren | Ll
Riy=| ™' | dt
" , dt
RE (¢ R
n,m( ) dRI:llm(t)
TR

Then we can state the generalized version of Theo-
rem 1 as follows:

THEOREM 4. For egch k=0,1,..., N, the vector of the
net profit functions RE(t), 0 <t < d,,, — d,, satisfies the
following differential equations:

-n n 0 0--00
R 0 —(n+6) =n» 0 --00
k
M: 0 0 —-n+6) n -0 0 ﬁg(t),
dt
| 0 0 0 0 -0 —0]
and forn=1,...,k,
_(n_l)cw 1 0 0
d]ik t —ney, 0O o0 --- 0 .
- + RE (1)
dt : 00 -
—ncy, 0 0 0
[—(n+w) 7 0 0007
0 —(n+0) ] 0 ---0 0
L 0 0 0 0 - 6 -6
The generalized boundary conditions are
RY.(0Y)=0, i=0,1,...,m,
3 5 nn+1) .~ n
m
n=1,...,N,
RY (0 =—c[-e;M e+ nE(X)]
1 A
—cw|:—nel-M‘16+—n(n+ )E(X)_E],
2 m

n=1,...,N,i=1,...,m,
RE (0%) =plr+RED (diyn —diy)]
+ (1 =p)RE N (diys — i),
k=0,1,...,N—1,n=0,...,k,i=0,1,...,m,
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where e; =10, ...,1,...,0] with 1 being the ith element,
e=[1,1,...,1]", and —e;M~"e being the mean length of
the remaining “off” period when the service interruption
process is in phase i,i=1,2,...,m.

The proof of Theorem 4 is very similar to that of
Theorem 1 and hence is omitted from this paper for
brevity. The system of differential equations stated in
Theorem 4 can be solved using the methods intro-
duced in §5. The algorithm to be used is very similar
to that for the original formulation; therefore, we omit
the details for brevity.

Note that if we use this generalization to formu-
late the queue of emergency patients as described, the
queue capacity m should be finite but can be arbitrarily
large. However, it is important to note that although
the mathematical analysis does not change with m,
the methods we propose become increasingly compu-
tationally expensive with larger m. In particular, the
method of LT and integrating factor are both O(m?).

8. Numerical Results

In this section, we report the results of our numeri-
cal study. This study has two main objectives: first, to
investigate the potential benefits of incorporating ser-
vice interruptions when determining optimal appoint-
ment times, and second, to study how the main
insights on optimal appointment-scheduling policies
that have been reported in the literature change when
service interruptions are considered. In our numeri-
cal study, when solving the optimization problems,
we used a built-in function fmincon in Matlab with
the interior-point algorithm option. It is important to
note that we have identified instances of Model I for
which the objective function has multiple local max-
ima and instances of Model II for which the objective
function has multiple local minima. Therefore, there is
no guarantee that the solutions that the fmincon func-
tion found are in fact globally optimal. To at least
partially overcome this issue, for each instance of the
problem, we used the fmincon function starting with
various initial points. Each initial point was obtained
by first randomly generating a vector of size N (the
number of appointments to be scheduled) whose com-
ponents take values between 0 and 1, and then mul-
tiplying this random vector by a scalar K, which is
setto 0, 3, 6,9, and 12 in turn. We then identified the
locally optimal solution corresponding to each initial
point and compared the objective function values at
these local optima to determine the “best” solution,
which we believe is very likely to be the global opti-
mum. It is also important to note that this uncertainty
on the global optimality of the solutions we obtained
does not prevent us from generating insights regard-
ing the importance of taking into account service inter-
ruptions, because the improvements we obtained are

already significant, as we report in the following.
Under the globally optimal solution, which is possibly
different from what we obtained, the improvements
can only be greater.

As we stated in §3, one of the desirable features of
our formulation and the solution methods is that the
interruption rate can be allowed to be time-dependent.
More precisely, the arrival rate of interruptions can
be a stepwise constant function. The way that this
generalization is handled in our solution methods is
somewhat tedious but straightforward. Specifically,
we use the following procedure: For a given stepwise-
constant interruption rate function, the problem hori-
zon consists of a sequence of time intervals in which
the interruption rate is constant. Because of this con-
stant interruption rate, within each interval one can
use the methods we developed in §5 with no changes.
In a sense, the appointment scheduling over each
interval can be seen as a separate problem in which
the interruption rate is a constant. Clearly, however,
the separated problems over these intervals are not
independent of each other, but that can be taken care
of by adding boundary conditions—which “transfer”
the “accumulated” reward (cost) from one interval to
the next—into the system of differential equations that
describe the evolution of the expected net profit (cost)
function.

Having the capability of handling time-dependent
interruption rates is crucial because of its practical rel-
evance. As we stated in §1, we are primarily moti-
vated by interruptions caused by emergency patients,
and empirical studies have consistently found that the
arrival rates of emergency patients depend highly on
the time of day. In our numerical study, although we
considered constant interruption rates for Model I, we
considered time-dependent rates for Model II. Note
that one could easily carry out a time-dependent study
for Model I as well.

8.1. Numerical Results for Model I

First, recall that T is the length of the service session
during which all appointments should be scheduled,
1/w is the mean service time, 1/6 is the mean dura-
tion for an interruption, p is the show-up probability,
and ¢, and ¢; are the patient waiting costs per unit
of time and the server overtime cost per unit of time
beyond T, respectively. In our numerical study for
Model I, we considered three different scenarios. For
Scenario1, weset T =8, u=1,0=0.5,p=0.75,¢c,=1,
¢;=1, and r =2. For Scenario 2, we simply increased
the overtime unit cost to ¢; =2, and for Scenario 3,
we kept c; =1 but decreased the no-show probability
to 0. Note that u and 6 are fixed in all three scenar-
ios. However, although we do not report any details
here, in our numerical study, we observed that the way
the system costs change with u and 6 is as expected.
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Table 1 Numerical Results for Scenario 1 Table 3 Numerical Results for Scenario 3

n H* Rnomter Happrox Req n H* Rnomter Rappmx Req
0.00 7.9422 (8) 7.9422 (8) 7.9422 (8) 7.8584 (8)  0.00 9.0101 (7) 9.0101 (7) 9.0101 (7) 8.9160 (7)
0.10 3.8440 (5) 2.2876 (8) 3.6408 (6) 3.7363 (5)  0.10 4.4608 (4) 2.1134 (7) 4.2718 (5) 4.3855 (4)
0.15 2.7369 (4) —0.4731 (8) 2.4316 (5) 26328 (4) 0.5 3.1885 (3) —1.2710 (7) 3.0102 (4) 3.1344 (3)
0.20 1.9999 (3) —3.2036 (8) 1.6683 (4) 1.9328 (3) 020 2.3879 (3) —4.6284 (7) 1.6520 (4) 2.3055 (3)
0.25 1.4750 (2) —5.9116 (8) 0.7449 (4) 14750 2) 025 1.8552 (2) —7.9668 (7) 1.3644 (3) 1.8552 (2)
0.30 1.1951 (2) —8.6030 (8) 0.6449 (3) 11951 (2) 030 14535 (2)  —11.2923 (7) 0.5314 (3) 1.4535 (2)

Note. Numbers in parentheses indicate N/, the optimal number of appoint-
ments to be scheduled in each setting.

Because the increase in either essentially makes the
server faster, the optimal costs decrease if either of
these two parameters increases.

For each scenario, we considered six different values
for 7, the arrival rate of interruptions: 0, 0.1, 0.15, 0.2,
0.25, and 0.3. For each instance of the problem, we first
determined the optimal policy and the objective func-
tion value under the optimal policy, which we denote
by R*. In addition, we also determined the perfor-
mance of the following policies: the policy that ignores
interruptions; the policy that considers interruptions
approximately by assuming that service times are
exponentially distributed with mean adjusted to be
equal to the mean effective service time given in (4);
and the policy that considers the interruptions but has
the restriction that the times between all consecutive
appointments are the same (equally spaced appoint-
ments). In the following, we use Riginters Rapproxs and
R,q to denote the value of the objective function under
these three policies, respectively.

The results are given in Tables 1-3 for Scenarios 1-3,
respectively. We can observe immediately from the
three tables that completely ignoring interruptions can
be quite costly, particularly when the interruption rate
is high. It is important to note that in Model I, in addi-
tion to the appointment schedule, we also determine
the total number of appointments to be scheduled.
Ignoring interruptions clearly overestimates the num-
ber of appointments the system can reasonably handle
and results in negative values for the objective func-
tion. (In the tables, the numbers in parentheses are
the optimal number of appointments to be scheduled
associated with each policy under each case.) Captur-
ing the interruptions approximately by extending the

Table 2 Numerical Results for Scenario 2

Yl R Rointer Rapprox Req
0.00 7.0223 (7) 7.0223 (7) 7.0223 (7) 6.9340 (7)
0.10 3.2216 (4) 1.5562 (7) 3.0319 (5) 3.1439 (4)
0.15 2.2711 (3) —1.1313 (7) 1.9768 (4) 2.2224 (3)
0.20 1.6406 (3) —3.7985 (7) 0.8578 (4) 1.6205 (2)
0.25 1.3024 (2) —6.4509 (7) 0.6503 (3) 1.3024 (2)
0.30 0.9838 (2) —9.0928 (7) 0.0561 (3) 0.9838 (2)

Note. Numbers in parentheses indicate N/, the optimal number of appoint-
ments to be scheduled in each setting.

Note. Numbers in parentheses indicate /*, the optimal number of appoint-
ments to be scheduled in each setting.

mean service time appropriately seems to work rea-
sonably well when the interruption rate is small, but
for high interruption rates, the difference between the
performance of the optimal policy R* and the per-
formance of the approximation R, is significantly
greater. For brevity, we do not report the optimal
schedule d here, but we observe that when the inter-
ruption rate is high the optimal policy does not have a
dome shape. It has a monotone structure; more specif-
ically, the time between two consecutive appointments
is larger for appointments scheduled later in the day.

Finally, we observe that requiring the times between
two consecutive appointments to be the same through-
out the day does not degrade the performance signif-
icantly. Interestingly, the performance gap is smaller
when the interruption rate is higher. This might be
because regardless of whether or not one has the
restriction, when there are frequent interruptions, the
system will incur significant overtime costs, and thus
the difference between any two policies will be small,
as long as they both take interruptions into account
and thus choose N the total number of appoint-
ments to be scheduled reasonably. However, it is also
important to note that this relatively small difference
between the two policies is likely to be caused partially
by the fact that the interruptions occur at a constant
rate throughout the day. The difference would likely
be more significant when the interruption rate is time
dependent, which we demonstrate for Model II in the
next section.

8.2. Numerical Results for Model II
Studies on the arrivals of patients to emergency
departments have found that the arrival rate function
is typically such that the rate makes a single peak in
the late morning or early afternoon (see Duguay and
Chetouane 2007, McCarthy et al. 2008, Pitts et al. 2008)
or makes two peaks, one during late morning hours
or early afternoon and the other during late afternoon
or early evening (Draeger 1992, Rossetti et al. 1999,
Channouf et al. 2007). All studies find that the rate
typically increases rapidly during the early morning
hours and decreases rapidly starting with late evening.
Based on these findings, we considered two differ-
ent emergency arrival rate (interruption rate) func-
tions for our numerical study. In Scenario 1, the arrival
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rate function for emergency patients is given by n(t) =
0.3 for t €[0,3), 0.5 for t € [3,5), 0.4 for t € [5,11),
0.2 for t € [11,17), and 0.1 for t € [17, 00). Thus, in
Scenario 1, the interruption rate has a single peak. In
Scenario 2, the interruption rate has two peaks. More
specifically, n(t) =0.2 for t € [0, 4), 0.5 for t € [4, 6), 0.3
fort € [6,10),0.4 for t € [10, 12), and 0.1 for f € [12, o).
For both scenarios, we assumed that there were seven
appointments to be scheduled and we chose u =1,
6 =0.5, and p =0.75. We let y =c,/(c, + c,), and for
each scenario we varied it from 0.1 to 0.9.

Under each scenario, for each fixed value of y, we
determined the optimal schedule, the optimal sched-
ule when interruptions are ignored, and the optimal
schedule under the restriction that appointments are
equally spaced. Figure 1 provides a visual description
of the optimal appointment schedule for Scenario 1
with y = 0.5. It also shows the optimal equally
spaced schedule and the optimal schedule under the
assumption that interruptions are ignored. Each curve
was obtained by connecting the corresponding points
(i,x;),i=2,...,7, where i is the appointment num-
ber, with appointment 1 being the first appointment
of the day, and x; is the time between the ith and the
(i — 1)th appointments. Note that the plots start with
i =2 because the first appointment is always sched-
uled for t =0 in all cases.

The optimal schedule obtained by ignoring inter-
ruptions underestimates the load on the system. As a
result, under this policy, appointments are scheduled
close to each other. When interruptions are considered,
appointments are scheduled more sparsely. On the
other hand, the equally spaced schedule captures the
interruption effect to a certain extent but does not
respond to changes in interruption rate throughout

the day. Because of that, the middle portion of the
curve for the equally spaced schedule stays below the
optimal schedule curve during the period when inter-
ruptions are most likely to happen. In the optimal
schedule, appointments are more frequent early and
late in the day and less frequent in the middle of the
day. This is expected because in Scenario 1, the inter-
ruption rate is higher in the middle of the day. One
would expect that when the interruption rate function
has a different shape, the optimal policy would have
a different structure as well. That is indeed the case.
For example, one can easily find examples in which
interruption rate functions are monotone in time of
the day, and optimal appointment policies are also
monotone (times between consecutive appointments
increase or decrease throughout the day). Such inter-
ruption rate functions can be seen in hospitals on days
that have special events such as football games, which
are known to increase the demand for emergency
response services. Thus, whether one would observe
a dome-shaped structure for the optimal appointment
schedule depends significantly on the shape of the
interruption rate function.

We also evaluated the performance of each policy
using our model where interruptions are present and
computed the percentage improvement one gets by
explicitly considering interruptions when scheduling
appointments and the percentage improvement that
one gets by not requiring equally spaced appoint-
ment times. (Note that, as in §8.1, when we find the
optimal policy under the restriction that appointments
are equally spaced, we do consider the interruption
process so that the observed performance improve-
ment results only by not requiring the times between
the appointments to be the same.)

Figure 1 Optimal Schedules Under Different Policies
3.0 T
—A— Opt. schedule
— & - Opt. equally spaced schedule
25k .- Opt. schedule by ignoring interruptions
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Table 4 Benefits of Considering Interruptions and Allowing Flexible

Appointment Times Under Scenario 1

Considering vs. ignoring Unconstrained vs. equally spaced

Y interruptions (%) appointments (%)
0.1 64.26 15.34
0.3 20.78 5.77
0.5 3.76 3.98
0.7 0.73 2.43
0.9 0.17 119

Tables 4 and 5 present the results for Scenarios 1
and 2, respectively. We can immediately observe from
the first column in both tables that the “cost” of
ignoring interruptions could be significant, particu-
larly when patient waiting cost is high. When y =0.1,
the benefit from modeling the interruptions can be
more than 64%. When the waiting cost is small,
the interruptions are much less of a concern. Even
if patients end up waiting for a long time because
of interruptions, that does not affect the objective
function in a significant way. As a result, explicit
consideration of the interruption process does not gain
us much. Note that the improvements are not as dra-
matic as those in Model I, because N is not a decision
variable in Model II.

Looking at the second column in both tables, we
observe the percentage improvement one would get
by allowing appointments to be scheduled at any
time, as opposed to requiring them to be scheduled
at equally spaced time points. We observe that there
are modest improvements in all cases (approximately
15% when waiting cost is high). It is difficult to make
a strong statement as to whether these improvements
are large enough to not recommend equally spaced
appointments, because such simple appointment-
scheduling policies might have some additional
advantages—such as ease of implementation—that
are not captured in our formulation. Nevertheless,
the improvements are clearly larger than when there
are no interruptions (see Hassin and Mendel 2008).
This is particularly the case when the interruption
rate changes with time as in our numerical study.
(Although we do not report it here, we found that
when the interruption rate is constant, the improve-
ments are less significant.) This is not surprising,
because in that case, one can see that there could

Table 5 Benefits of Considering Interruptions and Allowing Flexible

Appointment Times Under Scenario 2

Considering vs. ignoring Unconstrained vs. equally spaced

Y interruptions (%) appointments (%)
0.1 50.17 13.9

0.3 16.12 7.21

0.5 2.37 3.98

0.7 0.88 2.25

0.9 0.14 1.26

potentially be more benefits in asking more patients
to come when the interruption probability is low,
resulting in more frequent appointments during cer-
tain times of the day. The benefits would potentially
be higher when the variations in the interruption rate
throughout the day are more significant.

8.3. Simulation Study: Systems with

Nonexponential Service and

Interruption Times
So far, we assumed that the service times and the inter-
ruption times are exponentially distributed. Although,
as we discussed in §7, one can use phase-type dis-
tributions for the interruption times and a simi-
lar generalization can be made for service times as
well, assuming exponential distribution for service
and interruption times significantly simplifies com-
putational requirements. However, empirical studies
have mostly found that service times typically fol-
low a lognormal—not exponential—distribution (see,
e.g., Cayirli and Veral 2003, Klassen and Yoogalingam
2008). It is thus important to investigate how the
appointment-scheduling policies that are obtained
through our mathematical models would perform in
settings where the exponential distribution assump-
tion does not hold.

Specifically, we consider Model II and assume that
there are seven appointments to be scheduled under
the restriction that the times between the appoint-
ments are the same. The only reason we concentrate on
the problem with equally spaced appointment inter-
vals is that with this restriction there is only one
decision variable, the time between two consecutive
appointments; this makes simulation optimization rel-
atively a more viable option. Without the restriction,
there would be six decision variables, and finding the
optimal values for these variables using simulation
would be computationally expensive. In the simula-
tion model, we assumed that both the service times
and interruption times have lognormal distribution
with mean 2. We considered four different values for
the coefficient of variation (CV) (0.6, 0.8, 1.0, and 1.2).
We also considered three different values for the
arrival rate of interruptions (0.1, 0.15, and 0.2) and
three different values for the cost ratio vy =c¢,/(c, + ¢,,)
(0.1, 0.5, and 0.9). All these different choices for the
three parameters resulted in 36 different scenarios. In
all the scenarios, we assumed that the no-show prob-
ability is zero.

For each scenario, we used a relatively primitive
simulation optimization method that uses line search
over a discrete set of values ({0.05, 0.10, ..., 11.00}) for
d, the time between two consecutive appointments.
With each d, we ran 100,000 independent replica-
tions to obtain the mean cost and its associated 95%
confidence interval. We then identified the “optimal”
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policy (d) as the one under which the mean cost is the
smallest. In the following, we use G, to denote the
mean cost under this policy. It is important to note that
the actual “optimal” policy is possibly different from
the one we obtained here, because our study has not
established optimality at some statistically significant
level, even among the set of discrete choices. It appears
that significantly more replications are needed to con-
clude any policy as being “optimal” at some statis-
tically significant level. However, it is clear that the
performance of the policy we obtained would be very
close to that of the actual optimal policy and thus
would not change the conclusions we reach.

After determining the “optimal” policy and the
mean cost under this policy, we then identified the
policy that would be optimal if the service times
and interruption times were exponentially distributed
with the same mean as in the simulation model.
We then used this policy in the simulation model

to determine how that policy would perform in the
lognormal setting. In the following, we use C,, to
denote the mean cost (obtained via simulation) under
the policy that is optimal for the system with exponen-
tially distributed service and interruption times.

The results are summarized in Table 6. We can
observe that the policies obtained by assuming expo-
nential distributions perform quite well. In many
cases, the performance difference is less than 1%,
although it is closer to 5% when the coefficient of vari-
ation is 0.6. The performance difference is smallest
when the coefficient of variation is high (1 and 1.2).
This may not be surprising, given that the exponential
distribution has a coefficient of variation of 1. Thus,
our findings suggest that the exact shape of the dis-
tribution may not be very important in predicting
how well the policies obtained using our formulation
would perform, but their performance is likely to be
better when the coefficient of variation is high.

Table 6 Simulation Results
Ciog @nd Cexp and Percentage difference
cv Y n 95% confidence interval 95% confidence interval in the mean
06 01 0.10 8.0962 [8.0637, 8.1288] 8.4957 [8.4711, 8.5203] 4.93
0.15  10.3303 [10.2934,10.3672] 10.7668 [10.7376,10.7960] 4.23
0.20  12.4425 [12.4033,12.4817] 12.9300 [12.8971,12.9629] 3.92
05 010 157692 [15.7274,15.8110] 15.8562 [15.8178, 15.8946] 0.55
0.15  18.2025 [18.1560, 18.2491] 18.2740 [18.2293,18.3188] 0.39
0.20  20.5166 [20.4617,20.5714]  20.5306 [20.4810,20.5801] 0.07
09 010  17.7846 [17.7511,17.8180] 18.0671 [18.0311,18.1032] 1.59
0.15  19.5262 [19.4873,19.5651] 19.9070 [19.8656, 19.9484] 1.95
0.20  21.2808 [21.2370,21.3247]  21.6873 [21.6412,21.7334] 1.91
08 041 0.10 9.1742 [9.1292,9.2191] 9.3187 [9.2802,9.3573] 1.58
0.15  11.5924 [11.5440, 11.6409] 11.7027 [11.6587,11.7468] 0.95
0.20  13.8340 [13.7785, 13.8895] 14.0024 [13.9524,14.0524] 1.22
05 010  17.1306 [17.0735,17.1878] 17.1850 [17.1313,17.2388] 0.32
0.15  19.6467 [19.5807,19.7128] 19.7675 [19.7051,19.8298] 0.61
0.20  22.1568 [22.0856,22.2280]  22.1973 [22.1293,22.2652] 0.18
0.9 010  18.2144 [18.1714,18.2573] 18.3201 [18.2753,18.3648] 0.58
0.15  19.9871 [19.9385,20.0357]  20.1175 [20.0668, 20.1683] 0.65
020  21.7668 [21.7124,21.8213]  21.8974 [21.8411,21.9536] 0.60
10 041 0.10  10.3574 [10.2963, 10.4184] 10.3638 [10.3056, 10.4220] 0.06
0.15  12.9443 [12.8761,13.0126] 13.0213 [12.9532,13.0894] 0.59
0.20  15.3906 [15.3208, 15.4604] 15.5055 [15.4290, 15.5819] 0.75
05 010  18.4510 [18.3753,18.5268] 18.4869 [18.4163,18.5574] 0.19
0.15  21.1498 [21.0658,21.2338]  21.1985 [21.1175,21.2795] 0.23
0.20  23.7796 [23.6906,23.8687]  23.8111 [23.7213,23.9009] 0.13
09 010 185569 [18.5030,18.6107] 18.5782 [18.5243,18.6321] 0.11
0.15  20.3532 [20.2937,20.4128]  20.3653 [20.3050, 20.4257] 0.06
0.20  22.1373 [22.0712,22.2033]  22.1529 [22.0860,22.2199] 0.07
12 041 0.10  11.5939 [11.5125,11.6753] 11.6645 [11.5789,11.7502] 0.61
0.15  14.3977 [14.3076,14.4877] 14.5031 [14.4068, 14.5994] 0.73
0.20  17.0908 [16.9917,17.1900] 17.1819 [17.0753,17.2884] 0.53
05 010  19.6490 [19.5529,19.7451] 19.7608 [19.6704,19.8513] 0.57
0.15  22.5548 [22.4485,22.6611]  22.5992 [22.4971,22.7012] 0.20
020  25.2419 [25.1279,25.3558]  25.4963 [25.3793,25.6134] 1.01
0.9 010  18.8049 [18.7421,18.8677] 18.8189 [18.7555,18.8823] 0.07
0.15  20.5560 [20.4852,20.6268]  20.6123 [20.5416,20.6830] 0.27
0.20  22.4270 [22.3498,22.5042]  22.4606 [22.3819,22.5392] 0.15
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When service and interruption times are not expo-
nentially distributed, for a given appointment sched-
ule, simulation of an appointment system would most
likely give a more reliable estimate on the mean per-
formance as opposed to using our numerical meth-
ods that assume exponential distributions. However,
simulation is very inefficient when it comes to iden-
tifying the “optimal” policy. When there is one sin-
gle decision variable, as in the simulation study we
conducted in this section, simulation could be a rea-
sonable choice. However, when the times between
appointments are not restricted to be the same and/or
when the number of appointments to be scheduled is
also a decision variable, there are so many different
policies to compare that finding the “optimal” policy
by simulation is impractical. Even if one is interested
in using simulation optimization, our numerical meth-
ods provide a fast way of obtaining a good policy
that can be served as a good starting point, and they
help in making the process much more efficient. Fur-
thermore, our methods would help in carrying out a
quick what-if analysis and providing insights into var-
ious research questions of interest (as we did in §§8.1
and 8.2) in an efficient manner. Finally, incorporation
of various constraints into the optimization problem,
such as putting a bound on the expected patient wait-
ing time, is much more straightforward and efficient
when using our numerical methods than when using
simulation optimization.

9. Concluding Remarks
The vast literature on appointment scheduling has
provided both various methods to schedule appoint-
ments and valuable insights into the type of policies
that should be expected to perform well. However,
the possibility that the service of scheduled patients
can be interrupted has largely been ignored. In some
settings, such as outpatient clinics that are located
outside of the hospitals, it might be reasonable to
ignore interruptions if they tend to be short in dura-
tion or are so rare that it is difficult to predict when
and why they would occur. However, there are many
appointment-based services within hospitals (such as
electronic imaging machines) for which interruptions
are not only common but can also be predicted to a
certain extent based on past data. For example, the
rate of patient traffic to MRI or CT scan machines from
the emergency departments, which interrupts sched-
uled services, can easily be determined as a function
of the time of day. This paper focuses on appointment
scheduling for systems for which service interruption
is a regular phenomenon.

One of the major contributions of this paper is that it
develops a general framework that can be used in the
analysis of various appointment-scheduling models

that make different assumptions regarding perfor-
mance measures and decision variables. We have
concentrated on only two formulations, but one can
easily come up with alternative models that can be
analyzed in almost the same way. Introducing the
possibility that services can be interrupted brings sig-
nificant difficulty into mathematical modeling and
analysis. One of the main challenges is to come up
with an expression for the objective function. We over-
come this difficulty by first writing the total accumu-
lated net profit after T in Model I, or the total accumu-
lated cost after the appointment time of the last patient
in Model II, and going backward in time, appoint-
ment by appointment, until time zero, the beginning
of the day. This approach gives us a system of dif-
ferential equations whose solution provides the objec-
tive function value for a given appointment schedule.
The solution to the differential equations is not readily
available, but we propose two different solution meth-
ods, either of which can be used to obtain the solution
and determine the objective function value.

Having a formulation and a method for determin-
ing the optimal policy is important for two main rea-
sons. First, they can be used in practice if model
assumptions are believed to fit reasonably well with
the practical setting considered. Second, they can be
used to solve various problem instances in order to
obtain some general insights into scheduling policies
that perform well when interruptions are present. Part
of this paper is devoted to this second potential use
of our framework. As a result of this analysis, we
made a number of observations: We found that ignor-
ing interruptions can lead to policies that perform
very poorly, especially when the number of appoint-
ments to be scheduled on a given day is also a deci-
sion variable. One way of considering interruptions
approximately could be by adjusting the mean service
time appropriately in the model that ignores interrup-
tions. However, that approach appears to work well
only when the interruption rate is small. These two
observations point to the importance of explicit for-
mulation of the interruption process. We also observed
that policies that require the time between consecu-
tive appointments to be the same have a decent per-
formance when the interruption rate is constant, but
their performances worsen when the interruption rate
is time dependent. This suggests, for example, that
when scheduling appointments for electronic imag-
ing machines that are shared by emergency patients, it
might be worthwhile to drop the convenience of hav-
ing equally spaced intervals and distribute appoint-
ments over time so that there are fewer scheduled
appointments around times when the arrival rate of
emergency patients typically peaks.

An important assumption made in our models is
that interruptions are preemptive. This would be a
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reasonable assumption in cases where interrupting a
regular service is practically possible (for example,
MRI machines), but there are also settings in which
preemption may not be an option (e.g., surgeries).
Thus, a potentially useful direction for future research
is the analysis of appointment systems with nonpre-
emptive interruptions.

Electronic Companion

An electronic companion to this paper is available as
part of the online version at http://dx.doi.org/10.1287/
msom.1120.0394.
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