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The objective of this paper is to use mathematical modeling and analysis to develop insights into and policies

for making bed allocation decisions in an Intensive Care Unit (ICU) of a hospital during periods when the

patient demand is high. We first develop a stylized mathematical model in which patients’ health conditions

change over time according to a Markov chain. In this model, each patient is in one of two possible health

stages, one representing the critical and the other representing the highly critical health stage. The ICU

has limited bed availability and therefore when a patient arrives and no beds are available, a decision needs

to be made as to whether the patient should be admitted to the ICU and if so which patient in the ICU

should be transferred to the general ward. With the objective of minimizing the long-run average mortality

rate, we provide analytical characterizations of the optimal policy under certain conditions. Then, based

on these analytical results, we propose heuristic methods, which can be used under assumptions that are

more general than what is assumed for the mathematical model. Finally, we demonstrate that the proposed

heuristic methods work well by a simulation study, which relaxes some of the restrictive assumptions of the

mathematical model by considering a more complex transition structure for patient health and allowing for

patients to be possibly queued for admission to the ICU and readmitted from the general ward after they

are discharged.
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1. Introduction

Efficient management of Intensive Care Unit (ICU) beds has long been a topic of interest in practice

as well as academia. Simply put, an ICU bed is a very expensive resource and the number of

available ICU beds frequently falls short of the existing demand in many hospitals. Therefore, it

is important to make the best use of these beds via intelligent admission and discharge decisions.

There is wide agreement that during times of high demand, beds should not be given to patients

who have little to benefit from intensive care treatment. However, when it comes to choosing among

patients who can potentially benefit from such treatment, there do not appear to be easy answers.

Even if one can quantify the ICU benefit at the individual patient level and there is agreement on

some utilitarian objective such as maximizing the expected number of survivors, it is not difficult

to see that allocating beds to those with the highest potential to benefit is not necessarily the

“right” thing to do. For example, if this potential benefit can only be realized at the expense of a

long length of stay, which is likely to prevent the use of the bed for treating other patients, then

it is difficult to weigh the “benefits” against the “costs.” In short, making patient admission and

discharge decisions for a particular patient, especially when overall demand is high, is a complex

task that requires careful consideration of not only the health condition of that particular patient

in isolation but a collective assessment of the health conditions and operational requirements of all

the patients in the ICU as well as the mix of patients the ICU expects to see in the near future.

The objective of this paper is to use mathematical modeling and analysis to develop insights and

policies which can be useful when making these complex decisions in practice particularly under

conditions where there is significantly high demand for limited ICU bed capacity.

The general framework we use to fulfill the objective we outlined above is as follows. We first

develop a stylized mathematical formulation for the ICU. This relatively simple formulation (com-

pared with the full complexity of the actual problem) allows us to provide characterizations for the

optimal policy under certain conditions. These characterizations not only provide overall insights

into “good” ICU admit/discharge decisions but also lead to the development of several heuristic
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policies that can potentially be used in practice. Finally, we test the performances of these policies

with a simulation study relaxing some of the restrictive assumptions of the stylized mathematical

formulation and find that the policies we propose perform quite well in comparison with some

alternative benchmarks.

Our mathematical formulation assumes that each patient’s health condition changes over time.

Specifically, there are two discrete-time Markov chains with one representing the evolution of the

patients in the ICU and one representing the evolution of the patients outside the ICU. Each

Markov chain has four states corresponding to death, highly critical, critical, and survival, where

death and survival states are absorbing states. As soon as a patient enters the death state or the

survival state, s/he leaves the system vacating the bed s/he has been occupying and therefore any

patient in the system can only be in one of the two health stages, critical or highly critical. In each

time period, a patient arrives with some probability and a decision needs to be made as to whether

or not to admit the patient and/or discharge any of the highly critical or critical patients to the

general ward early. The objective is to minimize the long-run average number of deaths.

We start our mathematical analysis by first considering an extreme setting, where the ICU has

a single bed. The main insight that comes out of this analysis is that the decision of which patient

to admit to the ICU depends on how much benefit the patients are expected to get from ICU

treatment and how long they are expected to stay in the ICU, and that which one of these two

factors is more dominant depends on the overall level of demand for the ICU. We then consider

the general setting, where the ICU has some arbitrary but finite number of beds. We formulate

the decision problem as a Markov decision process (MDP) and prove that in general the optimal

policy is a state-dependent policy, where the admission/discharge decisions depend on the mix of

patients present in the ICU at the time the decisions are made.

While our mathematical analysis leads to useful insights into ICU patient admit/discharge deci-

sions, it does not directly answer the question of how one can turn these insights into practical

policies and how such policies would perform under realistic conditions. To address that, we intro-

duce a simulation model, which enriches the mathematical model in a number of directions making
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it a more realistic environment for proposing and testing heuristics. Specifically, for this simulation

model, we assume that patients can be in one of six health stages and they can transition from

one stage to another according to a transition probability structure that is more complex than the

one assumed in the mathematical model. Unlike the case in the mathematical model, patients who

have already been discharged to the general ward are also considered for readmission to the ICU

and patients who are initially admitted to the general ward can be admitted to the ICU later on.

Finally, in accordance with our focus on bed allocation decisions during periods of high demand,

the model considers a 36-week time horizon with a 12-week period in the middle during which the

ICU observes more than usual demand levels with the arrival rate of patients first increasing and

then decreasing and going back to regular levels. (The scenario is created based on the estimates of

the US Centers for Disease Control and Prevention for flu seasons.) All of these additional features

lead to an environment which is significantly different from the one assumed by our mathemati-

cal model. Nevertheless, the relative simplicity of our structural results make it possible for us to

propose policies that can be used under more general conditions, such as those assumed by our

simulation framework.

Specifically, we propose three different heuristic policies and compare their performances with

those of four benchmarks. The three heuristics are named the Ratio Policy (RP), the Aggregated

Ratio Policy (ARP), and the Aggregated Optimal Policy (AOP). RP is the policy that prioritizes

patients according to their expected net benefit from ICU (increase in survival probability as a

result of being treated in ICU) divided by their expected length-of-stay, ARP is a version of RP

that assumes four patient health classes (same as assumed in the mathematical model), and AOP

is the policy that essentially uses the optimal policy for the mathematical model by assuming the

same classifications as ARP. Note that RP and ARP are both state-independent policies while AOP

is a state-dependent policy. Our simulation results indicate that even though all three heuristics

perform well compared with the benchmarks, RP is the best policy overall. The fact that the best-

performing policy is state-independent suggests that the optimality of state-dependent policies
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established for the mathematical model may not hold in general or that it might be difficult to

identify “good” state-dependent policies. However, it is important to note that, as we explain

in detail in the paper, even though our simulation study helps us further develop our intuition

into what kind of policies are likely to perform well, one should refrain from reaching definite

practical conclusions mainly because research on ICU patients is not at a level where we have a

clear understanding of how one should model the health condition of a patient and its evolution and

as a result there is significant uncertainty as to what the “right” simulation model is. Therefore,

one should not ignore the possibility that state-dependent policies might be superior and future

studies should continue to consider them. In any case, however, the good performance of RP in

our simulation study is promising for the future as it suggests that simple policies like RP, which

only requires estimates on patients’ survival probability and expected length of stay, could be good

enough and there may not be a need for more sophisticated decision making tools.

2. Literature review

In the medical literature, there has been a long line of research on quantifying the benefits of

ICU care and providing empirical and mathematical support for making more sound ICU admis-

sion/discharge decisions. Most of this work has concentrated on predicting patient mortality in the

ICU, estimating the benefits of ICU care, and more generally developing patient severity scores.

We do not attempt to provide a thorough review of this literature here, as it is extensive and is

not directly related to this paper, but only highlight a few papers as examples.

Strand and Flaatten (2008) provide a review of some of the severity scoring systems that have

been proposed and used over the years. Among these scoring systems are APACHE (Acute Physiol-

ogy and Chronic Health Evaluation) I, II, III, and IV (Zimmerman et al. (2006)), SAPS (Simplified

Acute Physiology Score) I, II, and III (Moreno et al. (2005)), and SOFA (Sequential Organ-Failure

Assessment) (Vincent et al. (1996)). One of the objectives behind the development of these scoring

systems is to obtain a tool that can reliably predict patient mortality, which has been the subject

of many other articles that aimed to improve upon the predictive power of the proposed scoring

systems (see, e.g., Rocker et al. (2004), Gortzis et al. (2008), and Ghassemi et al. (2014)).
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A number of papers study the benefits of ICU care and the effects of rationing beds in times of

limited availability. Sinuff et al. (2004) review past studies on bed rationing and find that admission

to the ICU is associated with lower mortality. Shmueli and Sprung (2005) study the potential

survival benefit for patients of different types and severity (measured by APACHE II score) and

Kim et al. (2014) quantify the cost of ICU admission denial on a number of patient outcomes

including mortality, readmission rate, and hospital length of stay using a large data set. Kim et al.

(2014) also carry out a simulation study to test various patient admission policies and find that a

threshold-type policy which takes into account the patient severity and ICU occupancy level has

the potential to significantly improve overall performance.

Studies found that delayed admission to or early discharge from ICUs, which are both common,

affect patient outcomes. For example, Chalfin et al. (2007) and Cardoso et al. (2011) study patients

immediately admitted to ICU and those who had delayed admissions (i.e., waited longer than 6

hours for admission) and conclude that the patients in the latter group are associated with longer

length of stay and higher ICU and hospital mortality. Wagner et al. (2013) and Kc and Terwiesch

(2012) find patients are discharged more quickly when ICU occupancy is high, and such patients

are associated with increased mortality rate and readmission probability.

In addition to Kim et al. (2014), which we have already mentioned above, a number of papers

from the operations literature develop and analyze models with the goal of generating insights into

capacity related questions for ICUs and Step Down Units (SDUs) and how patient admission and

discharge decisions should be made. Modeling the ICU as an M/M/c/c queue, Shmueli et al. (2003)

compare three different patient admission policies and find that restricting admission to those

whose expected benefit is above a certain threshold (which may or may not depend on the number

of occupied beds in the ICU) brings sizeable improvements in the expected number of survivors.

Dobson et al. (2010), on the other hand, develop a model in which patients are bumped out of (early

discharged from) the ICU and show how this model can be used to predict performance measures

like the probability of being bumped for a randomly chosen patient. The model assumes that each
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patient’s length of stay can be observed upon arrival and when a patient needs to be bumped

because of lack of beds, the patient with the shortest remaining length of stay is bumped out of the

ICU. Chan et al. (2014) develop a fluid formulation in which service rate can be increased (which

can be seen as patient early discharge) at the expense of increased probability of readmission.

The authors identify scenarios under which taking such action is and is not helpful. Armony et al.

(2018) develop a queueing model for an ICU together with an SDU and using this model provide

insights into the optimal size for the SDU.

To our knowledge, within the operations literature on ICUs, the paper that is closest to our

work is Chan et al. (2012). The authors consider a discrete-time MDP in which a decision needs

to be made as to which patient to early discharge (with a cost) every time a new patient arrives

for admission to the ICU. They show that the greedy policy, which discharges the class with the

smallest discharge cost, is optimal when patient types can be ordered so that the types with smaller

discharge costs have shorter expected length of stay and provide bounds on the performance of

this policy for cases when such ordering is not possible. Despite some similarities, our formulation

and analysis have some important differences. We assume that patients can be in one of two health

stages, can transition from one stage to the other during their stay, and they eventually either die

or survive. On the other hand, Chan et al. (2012) allow for multiple types of patients whose health

status can also change over time but their model does not permit a patient to return to a state s/he

has already visited. The main reason why these differences are important is that the analysis of the

two models leads to two different sets of results which complement each other. In particular, our

formulation allows us to push the analytical results and optimal policy characterizations further and

thereby provide deeper insights into optimal ICU admission and discharge decisions. For example,

we provide a characterization of the optimal policy not only when patients with higher benefits

from ICU have shorter length of stay but also when higher benefits can only come at the expense

of longer length of stay in the ICU.

Our analysis in this paper can also be seen as a contribution to the classical queueing control

literature where arriving jobs are admitted or rejected according to some reward or cost criteria.
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More specifically, because jobs in our model do not queue, it can be seen as a loss system (see,

e.g., Örmeci et al. (2001), Örmeci and Burnetas (2005), Ulukus et al. (2011) and references therein).

Within this literature, Ulukus et al. (2011) appears to be the closest to our work. This paper

considers a model in which the decision is not only whether or not an arriving job should be

admitted but also whether any of the jobs in service should be terminated. This termination action

can be seen as the early discharge action in our model. However, despite this similarity, there are

some important differences in the formulation. While Ulukus et al. (2011) consider a more general

form for the termination cost and multiple job classes, they do not allow the possibility of jobs

changing types during service. There are also important differences in the results. Just as we do in

this paper, Ulukus et al. (2011) also provide conditions under which one of the two types should be

preferred over the other at all times. However, our formulation makes it possible for us to provide

optimal policy characterizations at a more detailed level and mathematically establish some of

the numerical observations made by Ulukus et al. (2011) regarding the threshold structure of the

optimal policy.

3. Model Description

In this section, we describe the stylized mathematical formulation we use to generate insights

into “good” bed allocation decisions and develop practical heuristic methods. Specifically, in this

model, we consider an ICU with a capacity of b beds, where b is a finite positive integer. Patients

arriving to this system are assumed to have health conditions that require treatment in an ICU.

However, there is also the option of admitting these patients to what we refer to as the general

ward, where the patient may be provided a different level of service. It is also possible that a patient

who was previously admitted to the ICU can be early discharged to the general ward in order to

accommodate another patient. Note that we use the general ward to represent any non-ICU care

unit, which includes actual hospital wards, step-down or transitionary care units, nursing homes,

and any other facility that can accommodate the patients but cannot provide an ICU-level service

to the patients. In our model, we assume that all these non-ICU beds are identical and the capacity

of the general ward is infinite.
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Arriving patients are assumed to be in one of two health stages with stage 1 representing a highly

critical condition and stage 2 representing a critical condition. We consider discrete time periods

during which at most one patient arrives. Let λi > 0 denote the probability that a stage i patient

will arrive in each period for i= 1,2; λ≡ λ1 +λ2 denote the probability that there will be a patient

arrival; let λ̄ ≡ 1− λ denote the probability of no arrival, where we assume λ < 1. During their

stay, in the ICU or in the general ward, patients’ health conditions change according to a Markov

chain and they eventually either enter stage 0 or stage 3. Stage 0 corresponds to the death of the

patient while stage 3 represents the patient’s survival. As soon as a patient hits either stage 0 or

3, the patient leaves the system vacating the bed s/he has been occupying. We assume that the

system incurs a unit cost every time a patient leaves in stage 0 while there is no cost or reward

associated with other stages.

Patients currently in stage i ∈ {1,2} can enter stage i+ 1 or i− 1 in the next time period with

probabilities that depend on where they are being treated: ICU or general ward. A stage i patient

in the ICU either jumps to stage i+ 1 with probability pi, jumps to stage i− 1 with probability

qi, or stays in stage i with probability ri = 1− pi− qi. The respective probabilities for the general

ward are pGi , q
G
i and rGi . We assume that pi, qi, p

G
i , q

G
i are all strictly positive while ri and rGi are

non-negative. The transition diagram of patient evolution is shown in Figure 1.

Figure 1 Transition diagram of patient evolution in the ICU and general ward

In some respects, assuming that sick patients can only be in one of two health stages can be

seen as a significant simplification of reality. While it is true that it is difficult to capture the
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full spectrum of patient diversity with a two-stage model, the assumption helps us capture the

reality that patients’ health conditions change over time at least in some stylized way without

rendering the analysis impossibly difficult. More importantly, the assumption can in fact be justified

in some contexts because even in practice such simplifications are made to bring highly complex

decision problems to manageable levels. When managing patient demand under highly resource

restrictive environments, particularly in case of epidemics and mass-casualty events, practitioners

typically choose to employ prioritization policies that keep the number of triage classes at minimum

in an effort to make the policies simpler and easier to implement. For example, the ICU triage

protocol developed by Christian et al. (2006) places patients in need of ICU treatment into one

of two priority classes based on the patients’ SOFA scores. The proposed protocol also calls for

patient reassessments recognizing the possibility that there could be changes in the patients’ health

conditions. Nevertheless, in Section 6, we consider a more detailed and arguably more “realistic”

evolution model for patients’ health condition and demonstrate how our analysis based on this

rather simplified structure would be useful.

At each time period, the decision maker needs to make the following decisions: (i) if there is an

arrival, whether the patient should be admitted to the ICU or the general ward, and (ii) which

patients in the ICU (if any) should be early discharged to the general ward regardless of whether

there is a new arrival or not. Note that if all b beds are occupied at the time a stage i patient

arrives, admitting the patient will mean early discharging at least one stage 3− i patient to the

general ward. To keep the presentation simple, we will call both the decision of discharging an

existing patient from the ICU to the general ward and admitting a new arrival to the general

ward discharge even though the latter action does not in fact correspond to a discharge but direct

admission to the general ward.

We formulate this problem as an MDP. We denote the system state by x = (x1, x2), where xi

represents the number of stage i patients. Note that any new arrival is included either in x1 or

x2 since there is no need to distinguish between new and existing patients. Since the ICU has a

capacity of b and at most 1 patient arrives in each time period, the state space is:

S = {(x1, x2) : x1, x2 ≥ 0 and x1 +x2 ≤ b+ 1}.
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The decision at each epoch can be described by action a = (a1, a2), where ai is the number of stage

i patients to be discharged. The action space is defined as A= {(a1, a2) : a1, a2 ≥ 0, and a1 + a2 ≤

b+ 1}. Then in any state (x1, x2)∈ S, the feasible action set is

A(x1, x2) = {(a1, a2) : 0≤ ai ≤ xi, for i= 1,2, and x1 +x2− a1− a2 ≤ b}.

Let φGi denote the probability that a patient who is discharged to the general ward in stage i

will end up in stage 0 for i= 1,2. Then, φGi can be computed by solving the following equations

φG1 = qG1 + rG1 φ
G
1 + pG1 φ

G
2 , φ

G
2 = qG2 φ

G
1 + rG2 φ

G
2 .

Letting βGi = qGi /p
G
i for i= 1,2, we can show that

φG1 =
βG1 +βG1 β

G
2

1 +βG1 +βG1 β
G
2

, φG2 =
βG1 β

G
2

1 +βG1 +βG1 β
G
2

. (1)

Similarly, for i= 1,2, let φi denote the probability that a patient who is admitted to the ICU in

stage i will end up in stage 0 under the condition that the patient will never be early discharged

to the general ward. Then, φi can similarly be computed as

φ1 =
β1 +β1β2

1 +β1 +β1β2

, φ2 =
β1β2

1 +β1 +β1β2

. (2)

where βi = qi/pi for i= 1,2.

Let c(x1, x2, a1, a2) denote the immediate expected cost of taking action (a1, a2) in state (x1, x2).

The expected cost for the patients who will occupy the ICU during the next period is equal to

the expected number of ICU patients who will transition to state 0 in the next time period, i.e.,

(x1 − a1)q1. The expected cost for the discharged stage i patients is aiφ
G
i since each discharged

patient will end up in stage 0 with probability φGi . Note that this second portion of the cost is

the expected lump-sum cost of discharging stage i patients, the expected cost that will eventually

incur, not the immediate cost. However, for our analysis, we can equivalently assume that this cost

will incur immediately since we know that if the patient enters state 0 eventually, this will happen
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within some finite time period with probability 1. The total immediate expected cost then can be

written as

c(x1, x2, a1, a2) = a1φ
G
1 + a2φ

G
2 + q1(x1− a1).

Note that while a hospital could possibly also have financial considerations when making patient

admit/discharge decisions particularly under non-emergency conditions, in this paper, in parallel

with our focus on periods during which there is excessively high demand, we restrict our focus to

policies that aim to minimize the number of deaths.

Let P(a1,a2)(x1, x2, y1, y2) denote the probability that the system will transition to state (y1, y2)

from state (x1, x2) when action (a1, a2) is chosen. Then, we have P(a1,a2)(x1, x2, y1, y2) = P (y1, y2|x1−

a1, x2 − a2), where P (y1, y2|x1, x2) denotes the probability that given that there are x1 stage 1

patients and x2 stage 2 patients at a decision epoch after that epoch’s action is taken, there will be

y1 stage 1 patients and y2 stage 2 patients at the beginning of the next decision epoch. Specifically,

P (y1, y2|x1, x2) = λ̄

x1∑
u=0

x1−u∑
d=0

P̄1{x1, u, d}P̄2{x2, x1 +x2− d− y1− y2, y1− (x1−u− d)}

+λ1

x1∑
u=0

x1−u∑
d=0

P̄1{x1, u, d}P̄2{x2, x1 +x2− d− (y1− 1)− y2, (y1− 1)− (x1−u− d)}

+λ2

x1∑
u=0

x1−u∑
d=0

P̄1{x1, u, d}P̄2{x2, x1 +x2− d− y1− (y2− 1), y1− (x1−u− d)},

where P̄i{xi, u, d} is the probability that of the xi stage i patients, u of them will transition to

stage i+ 1 and d of them will transition to stage i− 1, i.e.,

P̄i{xi, u, d}=


(
xi
u

)(
xi−u
d

)
pui q

d
i r
xi−u−d
i , for u,d≥ 0 and u+ d≤ xi

0, otherwise.

A policy π maps the state space S to the action space A. We use Π to denote the set of feasible

stationary discharge policies. Let Nπ(t) and NG
π (t) respectively denote the number of patients who

enter stage 0 by time t in the ICU and in the general ward. Then Jπ(x), the expected long-run

average cost under policy π given the initial state x, can be expressed as

Jπ(x) = lim
t→∞

1

t
E
[
Nπ(t) +NG

π (t)|x
]
.
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Our objective is to obtain an optimal policy π∗ such that Jπ
∗
(x)≤ Jπ(x) for any π ∈Π and x∈ S.

Note that this MDP is a unichain with finite state and action spaces, hence the above limit exists

and is independent of the initial state x (see, e.g., Theorem 8.4.5 of Puterman (2005)). We also

know that there exists a bounded function h(x1, x2) for (x1, x2)∈ S and a constant g satisfying the

optimality equation

h(x1, x2) + g= min
(a1,a2)∈A(x1,x2)

{
c(x1, x2, a1, a2) +

∑
(y1,y2)∈S

P(a1,a2)(x1, x2, y1, y2)h(y1, y2)
}
, (3)

and there exists an optimal stationary policy π∗ such that g = Jπ
∗
(x) and π∗ chooses an action

that maximizes the right-hand side of (3) for each (x1, x2)∈ S.

4. Single-bed ICU

In this section, we consider the case where b= 1, i.e., there is a single ICU bed. The objective of

this analysis is to generate insights into situations where ICU capacity is severely limited. It will

also provide support for one of the heuristic policies we propose in Section 6.

When b = 1, at any decision epoch there are at most two patients under consideration, the

patient who is currently occupying the bed (if there is one) and the patient who has just arrived for

possible admission (if there is an arrival). Restricting ourselves to non-idling policies, (i.e., the bed

is never left empty when there is demand), we investigate the question of which of the two patients

to admit to the ICU. (An implicit assumption here is that ICU is the preferred environment for

the patients. This is a reasonable assumption to make, but nevertheless in the next section, we

identify conditions under which this is true in our mathematical formulation.) Specifically, there

are two stationary policies to compare, π̄1, the policy that discharges the stage 1 patient and π̄2,

the policy that discharges the stage 2 patient when the choice is between a stage 1 and a stage 2

patient. Under any of the two policies, when there are two patients in the same stage, the choice

between the two is arbitrary. Let J π̄k for k ∈ {1,2} denote the long-run average cost under policy

π̄k.

The following proposition provides a comparison of the performances of the two policies, which

accounts for both the incremental survival benefit and the required ICU length of stay (LOS) when
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making prioritization decisions. (The proof for the proposition as well as the proofs of all the other

analytical results in the paper are provided in the Online Appendix.) We first let Li denote the

expected ICU LOS for a patient admitted to the ICU in stage i and is never early discharged in

either stage 1 or 2. Then, Li can be obtained by solving the equations L1 = 1 + r1L1 + p1L2 and

L2 = 1 + q2L1 + r2L2, which gives us

L1 =
p1 + p2 + q2

p1p2 + q1p2 + q1q2

, L2 =
p1 + q1 + q2

p1p2 + q1p2 + q1q2

. (4)

Proposition 1. Suppose that b= 1, i.e., there is a single ICU bed, and the ICU admission decision

is between a stage 1 and stage 2 patient. Also assume without loss of generality that φGi − φi ≥

φG3−i−φ3−i for some fixed i∈ {1,2}. Then, we have

(a) if
φGi −φi
Li
≥ φG3−i−φ3−i

L3−i
, then it is optimal to admit the patient in stage i, i.e., J π̄i ≥ J π̄3−i;

(b) if
φGi −φi
Li

<
φG3−i−φ3−i

L3−i
, then it is optimal to admit the patient in stage i, i.e., J π̄i ≥ J π̄3−i, if and

only if

λ≤
(φGi −φi)− (φG3−i−φ3−i)

(φGi −φi)− (φG3−i−φ3−i) +
[
Li(φG3−i−φ3−i)−L3−i(φGi −φi)

] . (5)

The difference φGi −φi can be seen as the benefit of staying in the ICU instead of the general ward

for a stage i patient. From system optimization point of view, we can call the patients with larger

φGi −φi as “high-value” patients. On the other hand, the ratio (φGi −φi)/Li can roughly be seen as

the per unit time benefit of keeping a patient who arrives in stage i in the ICU at all times and thus

we can call the patients with larger (φGi −φi)/Li as “high-value-rate” patients. Then, according to

Proposition 1 (a), if stage i patients are both high-value and high-value-rate patients, they should

be preferred over stage 3− i patients. As Proposition 1 (b) implies, in order for stage i patients to

be preferable, it is not sufficient for them to be high-value. If they are high-value patients but not

high-value-rate, then they are preferable only if the arrival rate is sufficiently small. This is because

when the arrival rate is small, having a limited bed capacity is less of a concern and thus in that

case the value is the dominating factor. However, when the arrival rate is large, the lengths of stay
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are important as they would be a key factor in the availability of the ICU beds for new patients.

As a result the rate with which the value incurs becomes the dominant factor.

These results point to the importance of taking into account the ICU load when making patient

admission/early discharge decisions and prioritizing one patient over the other. In short, what may

be the “right” thing to do for one particular ICU may not be right for another. For ICUs with

relatively ample capacity, it might be best to focus on identifying patients who will benefit most

from ICU care and admit them without being overly concerned about how long they will stay.

However, for highly loaded ICUs, the decision is more complicated and the anticipated length of

stay should be part of the decision. In the following section, we investigate this question further by

analyzing dynamic decisions in a model where the number of beds in the ICU can take any finite

value.

5. Analysis of the multi-bed ICU model

In this section, we consider the long-run average cost optimization problem with optimality equa-

tions given in (3). An optimal action in any particular state is the one that achieves the minimum

in the optimality equation. We denote the set of optimal actions in state (x1, x2) by A∗(x1, x2):

A∗(x1, x2) =
{

(ā1, ā2)∈A(x1, x2) : c(x1, x2, ā1, ā2) +
∑

(y1,y2)∈S

P(ā1,ā2)(x1, x2, y1, y2)h(y1, y2) =

min
(a1,a2)∈A(x1,x2)

{
c(x1, x2, a1, a2) +

∑
(y1,y2)∈S

P(a1,a2)(x1, x2, y1, y2)h(y1, y2)
}}

.

Since the state space and action space are finite and costs are bounded, A∗ is non-empty. In

general, the set A∗(x1, x2) can have more than one element. However, for convenience, we adopt

the following convention for picking one action from the set and refer to it as the optimal action for

state (x1, x2). Specifically, we define the optimal action a∗(x1, x2) = (a∗1(x1, x2), a∗2(x1, x2)), where

a∗1(x1, x2) = min{ā1 : (ā1, ā2)∈A∗(x1, x2)}, and a∗2(x1, x2) = min{ā2 : (a∗1(x1, x2), ā2)∈A∗(x1, x2)}.

Thus, if there are multiple actions for any given state, we choose the one that discharges as few

stage 1 patients as possible; if there are multiple such actions, then among those we choose the one

that discharges as few stage 2 patients as possible.
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Theorems 1, 2, and 3 presented in this section below characterize the structure of the optimal

policy. The proofs of these theorems are provided in the Appendix, where we first analyze the system

with the objective of minimizing expected total discounted cost and establish some analytical

properties, which serve as a stepping stone to our main results for the long-run average case.

5.1. Optimality of non-idling ICU beds.

The non-idling policies are defined as the policies that will always allocate an ICU bed to a new

arriving patient and never discharge an ICU patient to the general ward when there are ICU

beds available. We first identify conditions under which there exists an optimal policy, which is

non-idling.

Theorem 1. Suppose that βi <β
G
i for i= 1,2. Then, there exists a stationary average-cost optimal

policy, which is non-idling, i.e., a policy under which it is never optimal to leave an ICU bed empty

whenever there is a patient in need of treatment.

Comparing βi with βGi can be seen as one way of assessing the potential benefit of ICU over the

general ward for stage i patients. The condition βi <β
G
i for i= 1,2 essentially means that the ratio

of the probability of a patient getting worse to the probability of a patient getting better over the

next time step is smaller in the ICU for all the patients. Theorem 1 states that this condition is

sufficient to ensure the existence of an optimal policy that admits patients of either stage to the

ICU as long as there is an available bed. We found numerical examples that show that when this

condition does not hold, the optimal policy is not necessarily non-idling meaning that the ICU

would only accept patients from a particular stage and keep some of the ICU beds empty even

when there is demand from patients of the other stage.

5.2. General structure of the optimal policy.

Since we restrict ourselves to the set of non-idling policies, which we know contains an optimal

policy under the assumption that βi < βGi for i = 1,2, we only need to investigate the optimal
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actions for states (x1, x2) such that x1 + x2 = b + 1 and x1, x2 > 0, i.e., when all ICU beds are

currently occupied, a patient has just arrived, and there are patients from both stages (including

the patient who has just arrived). As we describe in the following theorem, it turns out that the

optimal decision has a threshold structure.

Theorem 2. Suppose that βi < βGi for i= 1,2. Then, there exists a threshold x∗ ∈ [1, b+ 1] such

that for any state (x1, x2) with x1, x2 > 0 and x1 +x2 = b+ 1, we have

a∗(x1, x2) =


(1,0) if x1 ≥ x∗

(0,1) if x1 <x
∗.

According to Theorem 2, when the non-idling condition holds and when the system conditions

are so that one of the patients has to be admitted to the general ward because of a fully occupied

ICU, whether or not that patient should be a stage 1 or stage 2 patient depends on the health

conditions of all the patients in the ICU. Specifically, if the number of stage 1 (stage 2) patients in

the ICU is above a particular threshold value, which depends on all the model parameter values

and thus survival probabilities as well as lengths of stay, then one of the stage 1 (stage 2) patients

should be admitted to the general ward. In other words, if there are sufficiently many stage 1

patients, the preference should be for a stage 2 patient; otherwise the preference should be for a

stage 1 patient.

It is important to note that while x∗ can take one of the boundary values of 1 or b+ 1 (both

of which would imply that the policy is in fact not dependent on the composition of the patients)

there are examples that show that it can also take values in between. This means that there are

indeed certain settings in which the optimal policy is state-dependent. (We should note however

that it is not clear whether the potential benefits of using such a state-dependent policy can be

realized in practice. We investigate and discuss this issue in detail in Section 6.1.)

The fact that in general the optimal policy can be state-dependent might seem somewhat sur-

prising at first because the implication is that if there are two specific patients, A and B, one of
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them being in stage 1 the other in stage 2, and only one of them can be admitted to the ICU, then

whether we choose A or B depends on the health stages of all the patients in the ICU, not just A

and B. Given that this decision will not impact other patients’ survival chances and patient A’s

and B’s survival chances do not depend on the other patients in the ICU, it is unclear why the

choice between A and B depends on the other patients. To clarify this, in light of our analysis of

the single-bed case, consider the two important factors that go into the decision of which patient to

admit: expected net ICU benefit, which we would like to be as high as possible and expected length

of stay, which we would like to be as small as possible. The expected length of stay is important

because it directly affects the bed availability for the future patients. In particular, it affects the

probability that a bed will be available the next time there is a patient seeking admission to the

ICU. However, whether or not a bed will be available for the next patient (and patients thereafter)

depends on the length of stay for not just Patient A and Patient B but all the patients in the ICU.

Now, consider two extreme cases, one in which patients other than A and B all have very short

expected lengths of stay and one in which they all have long expected lengths of stay. In the

former case, there is a good chance for a bed to be available soon even if we ignore A and B,

and this, when choosing between A and B, will make the expected lengths of stay for A and

B far less important compared with the latter case. Thus, in the former case, whoever has the

larger expected benefit, will be (most likely) admitted to the ICU. In the latter case, however,

the decision is more complicated and in order to make a bed available for the next patient with a

higher probability, it might actually be preferable to admit the patient with the smaller expected

net benefit if that patient’s expected length of stay is shorter. In general, one can then see that,

as the composition of the patients in the ICU changes, future bed availability probability changes

and this in turn results in shifting preferences for the patient to be admitted. More specifically, as

Theorem 2 implies, there is an ideal mix of patients (a certain number of stage 1 patients and a

certain number of stage 2 patients), which hits the “right” balance between the expected benefit

and the future bed availability, and the optimal policy continuously strives to push the system to

that level by employing a threshold-type policy.
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Given the explanation above, it would be reasonable to expect that Patient A should always be

preferred over Patient B regardless of the patient composition in the ICU if the expected benefit

for Patient A is larger than that of Patient B and the expected length of stay for Patient A is

smaller than that of Patient B. We can indeed prove that is the case as we formally state in the

following theorem.

Theorem 3. Suppose that βi <β
G
i for i= 1,2, and for some fixed k ∈ {1,2}

φGk −φk <φG3−k−φ3−k and Lk ≥L3−k. (6)

Then, for any state (x1, x2) such that x1 +x2 = b+ 1, we have a∗(x1, x2) = (a∗1, a
∗
2) with a∗k = 1 and

a∗3−k = 0.

Theorem 3 states that if a particular health stage is associated with a lower expected ICU benefit

and longer expected length of ICU stay, then a patient from that health stage should be admitted

to the general ward when the demand for the ICU exceeds the ICU bed capacity. In this case, the

optimal policy is simple since one of the two stages can be designated as the higher priority stage

regardless of the system state. The result makes sense intuitively. If Patient A will benefit more

from the ICU bed compared to Patient B and Patient A will also vacate the bed more quickly for

the use of the future patients, there is no reason why the bed should be given to Patient B.

6. Simulation study

In Sections 4 and 5, we analyzed relatively simple formulations with the objective of generating

insights and coming up with heuristic methods, which are flexible enough to be used under more

general and realistic conditions. In this section, we have two main goals. First, to demonstrate how

one can construct heuristic policies based on our analysis assuming that we know how health status

of patients evolve in the ICU and in the general ward, and propose specific policies for the assumed

evolution model. Second, to report the findings of our simulation study where we investigated how

the policies we generated perform. Our simulation model relaxes some of the restrictive assumptions

of the mathematical model of Section 3. In particular, we consider a more detailed and realistic
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health evolution model, a non-stationary patient arrival process, the possibility of patients to wait

for admission to the ICU, and possible readmission of patients who have already been discharged

from the ICU. We start with describing the health evolution model used in our simulation model.

6.1. Simulation model

Given what is known in the medical literature, it is not possible to construct a detailed, realistic

model for describing how each patient’s health status evolves in and outside the ICU. This obviously

poses a significant challenge in reaching the two goals outlined above. While our mathematical

model, which assumes two health stages and possible transitions between the two, broadly captures

what happens in practice and is in fact in line with the only proposed classification protocol

developed (see Christian et al. (2006)), it is also very likely that the model, with its mathematically

convenient construction like having Markovian transition probabilities, fails to capture some of the

features that one might see in reality. For example, two patients might be in the same “health

stage” with respect to some objective criterion (one can think of a classification based on the

SOFA score as used by Christian et al. (2006)) but assuming they would have the same stochastic

evolution in the future could be an oversimplification if, for instance, one of the patients has just

arrived and the other patient has been in the ICU for hours or one of the patients’ health status has

been gradually improving suggesting a positive trend while the other’s health has been declining.

Thus, there are a number of ways our mathematical model can be generalized in order to make it

more “realistic.”

The health evolution model we used in our simulation study, which is depicted in Figure 2, helped

us capture some of the features described above. The model assumes four levels of “criticality”

but also takes into account the direction of the last transition for the intermediate two criticality

levels. Explicit consideration of the last transition makes it possible to at least partially capture

the effect of trend in the evolution of patients’ health status. More specifically, we assume that

at any point in time patients in the ICU or the general ward belong to one of the six stages

{1,2H,2L,3H,3L,4}, where stages 1 and 4 denote the most critical and the least critical levels,
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stages 2H and 3H denote the intermediate criticality levels for patients whose health condition has

been declining (i.e., the last transition was from a healthier stage) and stages 2L and 3L denote

the intermediate criticality levels for patients whose health condition has been improving (i.e, the

last transition was from a less healthy stage). Within one time period, which is assumed to be

one hour (and thus one day consists of 24 time periods), the health condition of patients in stage

i ∈ {1,2H,2L,3H,3L,4} can improve with probability pi, decline with probability qi, or stay the

same with probabilities ri = 1−pi−qi. Stages 0 and 5 are two absorbing stages where 0 corresponds

to death and 5 corresponds to survival. (See Figure 2 to see the probabilities corresponding to each

transition.)

Figure 2 Transition diagram for patient evolution in the ICU (Patients in the general ward follow the same

transition model with corresponding transition probabilities indicated by the superscript “G.”)

When choosing the values for transition probabilities, rather than setting them completely ran-

domly, we set them in a way that the system at least conforms to what we know from the medical

literature. Several articles in the literature provide estimates on ICU length of stay and survival

probabilities. However, in line with our focus on situations where the ICU experiences an extremely

high demand over a long period of time, we chose to use the estimates that are provided by Kumar

et al. (2009), which are based on data obtained in Canada during the 2009 H1N1 influenza out-

break. Kumar et al. (2009) found that the average mortality rate in the ICU was approximately

17% and the average length of stay in the ICU was 12 days. Therefore, we randomly generated sce-

narios so that the expected ICU death probability over all the scenarios is approximately 0.17 and
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the expected length of stay (with no early discharge) for the same is approximately 24× 12 = 288

hours. In addition, we ensured that the generated scenarios satisfied the condition that patients

who were previously in “healthier” stages are more likely to get “better.”

When generating the random scenarios we first identified a baseline setting that conforms to

the description above and then made random choices around this baseline. More specifically, we

set p1 = 0.016, p2L = 0.032U2L, p2H = 0.032U2H , p3L = 0.016U3L, p3H = 0.016U3H , p4 = 0.012 and

q1 = 0.0072, q2L = 0.01V2L, q2H = 0.01V2H , q3L = 0.012V3L, q3H = 0.012V3H , q4 = 0.016 where

U2L,U3L, V2H , V3H are independent random variables each uniformly distributed over (0.5,1), and

V2L, V3L,U2H ,U3H are independent random variables each uniformly distributed over (1,1.5). (Note

that the baseline level corresponds to the case where each random variable is set to 1.)

Kumar et al. (2009) do not provide any estimates on what the survival probabilities for the ICU

patients would be if they were treated outside the ICU. In the absence of such estimates, recognizing

that the condition of patients treated in non-ICU wards would be more likely to become worse and

less likely to become better, for each i ∈ {1,2H,2L,3H,3L,4}, we obtained qGi by multiplying qi

by a random coefficient uniformly distributed over (1,2), and pGi by multiplying pi by a random

coefficient uniformly distributed over (0.5,1).

In the simulation study, we focused on a time period during which the hospital experiences the

flu season. To model patient arrivals realistically, we used Centers for Disease Control (CDC) flu

season reports as well as FluSurge 2.0, the influenza patient demand prediction tool developed by

CDC. As one can observe from Figure A5.2 in the Online Appendix, the flu season typically starts

with a period where the arrival rate is mostly stationary, which is followed by an outbreak period,

and ends with another stationary period. We considered a 36-week time period where during the

first 12 weeks and the last 12 weeks patient demand is stationary (with an arrival probability of

λst in each time period) while the outbreak and the non-stationary demand period is observed

during the middle 12 weeks. According to the default scenario assumed by FluSurge 2.0, in this

middle 12-week period, the Daily Percentage Change in Demand (DPCD) (i.e., percentage change



Ouyang, Argon, and Ziya: Allocation of ICU Beds in Periods of High Demand
Article submitted to Operations Research; manuscript no. OPRE-2015-12-707 23

in the expected number of new patient arrivals) is 3% during the first 6 weeks and −3% during the

next 6 weeks. In our study, we considered two different settings, one with DPCD value of 3%, and

the other with 5% (six weeks of increase followed by six weeks of decrease with the same absolute

value for the rate). For the baseline stationary arrival rate, which the ICU observes during the

first 12 weeks and the last 12 weeks, we considered three different levels. Specifically, we let the

ICU load ρst
∆
= λstE[L]/b (where b is the number of ICU beds) to be either 0.5, 0.8, or 1. The

choice of baseline load on the ICU also determines the overall demand level during the outbreak

period since the arrival rates of patients will increase starting from these baseline levels. As for

the health stages for the new patients, rather than assuming that they all come in a given state,

we assumed that there is patient heterogeneity. Specifically, letting θi denote the probability that

the initial health stage for an incoming random patient is i, when generating scenarios, we let

θi = (UA
i + 1)/

∑
j∈{1,2L,2H,3L,3H,4}(U

A
j + 1), where UA

i ∼U(0,1) for each stage i.

We assumed that the ICU has 20 beds for our simulation study. (Note that the choice of a 20-bed

ICU together with the three different load levels we consider in our study are consistent with the

range of possible demand predictions of FluSurge 2.0 and a typical population/ICU bed ratio in

the US.) We also assumed that, as in the mathematical model, there is no limit on the number

of patients who can be accommodated in the general ward. (Note that while general ward beds

are also limited in numbers in reality, they are more widely available than ICU beds and the key

issue typically is the effective management of ICU beds.) However, in the simulation model, in

accordance with commonly observed practice, we assumed that when a bed becomes available in

the ICU and there are patients in the general ward, one of those patients is admitted to the newly

vacated bed. With this feature, the simulation model allows the possibility of readmitting patients

who were previously discharged from the ICU to the general ward back to the ICU and having

patients who find the ICU full to queue up in the general ward for possible admission later on.

6.2. Proposed policies and benchmarks

In this section, we propose policies which are based on our mathematical analysis but are meant

to be used in the more general construction assumed in the simulation model. By doing that, we
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will also be illustrating more generally in what way our mathematical results and insights can be

used to develop heuristics that can be used under any future patient health evolution model that

is supported by medical research and data. It is important to note that the policies we propose

assume that patient demand is so high that ICU admits and discharges are done throughout the

day as needed unlike some of the common practices in place under regular operating conditions,

which restrict such decisions to be made and actions to be taken only during certain times of the

day.

The first two policies described below are included mainly because they can serve as benchmark

policies and do not necessarily represent policies that are used in practice.

First-Come-First-Served (FCFS): Patients are admitted to the ICU beds in the order they

arrive. None of the patients are discharged early to the general ward when a new patient finds the

ICU full. In such a case, the patient is admitted to the general ward and waits for an opening in the

ICU. When a patient in the ICU leaves (as a result of death or survival), among the patients who

are still in the general ward, the one who was first admitted to the general ward is admitted to the

newly vacated bed in the ICU. This policy would clearly capture the policy of not being proactive

about making the best possible use of the ICU and opting for a policy, which could largely be

considered as “fair” rather than aiming to maximize “the greatest good for the greatest number.”

Random Discharge Policy (RDP): Under this policy, if the ICU is fully occupied when a

patient arrives one of the patients among the patients already in the ICU and the patient who has

just arrived is randomly chosen and transferred to the general ward. When a patient in the ICU

leaves (as a result of death or survival), one of the patients in the general ward is randomly chosen

for admission to the newly vacated bed.

Greedy Policy (GP): This is an index policy, which gives priority according to the order deter-

mined by the differences φGi −φi where φi and φGi denote the probability of death in the ICU and

the general ward, respectively, for a patient in health stage i. Whenever an arriving patient finds

the ICU full, the policy discharges the patient whose survival probability will have the smallest
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drop as a result of being treated in the general ward as opposed to the ICU. Similarly, when a

patient leaves the ICU (as a result of death or survival), among the patients in the general ward,

the patient with the most to benefit is chosen. Note that based on our mathematical analysis of

the single-bed scenario, specifically Proposition 1, it might be reasonable to expect that GP would

perform well when the patient demand is relatively low but when demand is high, as we assume in

our simulation study, because the policy ignores the expected lengths of stay, we would not expect

the policy to perform well.

Ratio Policy (RP): This is an index policy, which gives priority according to the order determined

by (φGi − φi)/Li where Li is the expected length-of-stay for patients in health stage i. Whenever

an arriving patient finds the ICU full, the policy discharges one of the patients with the smallest

expected drop in the survival probability divided by the expected length of ICU stay. Similarly,

when a patient leaves the ICU (as a result of death or survival), among the patients in the general

ward, the patient with the largest value of (φGi − φi)/Li is chosen. Our mathematical analysis

provides strong support for this heuristic particularly when demand is high and thus one would

expect good performance from this policy in the simulation study. Specifically, Proposition 1, which

assumes the simplistic single-bed setting, finds that this policy is optimal when the arrival rate is

sufficiently high. For the multi-bed scenario, we know from Theorem 2 that the optimal policy has

a threshold structure, which would still be in line with RP, but we also have examples that show

that RP is not optimal in general and that the optimal policy is state-dependent. Nevertheless,

Theorem 3 finds that under a condition for which RP and GP would be in complete agreement,

RP would be optimal.

An important assumption underlying GP and RP is that we can observe each patient’s health

stage precisely. Practically, however, this may not be possible. Patients could still be evolving

according to some more sophisticated transition probability structure like the one we assumed in

the simulation model but we might only be able to do some rough classification and make decisions

accordingly without knowing precisely in which health stage each patient is in. In fact, this would
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most likely be the case at least in the foreseeable future as it is very difficult if not impossible to

come up with a classification system that perfectly captures patient evolution at a very detailed

level. To get a sense of how the policies we propose would perform in such a case, we also consider

“aggregated” versions of GP and RP. They are aggregated in the sense that, as shown in Figure

3, if the patient is in one of the health stages 1, 2H, or 2L, the decision maker knows that the

patient is in one of these stages but not the exact health stage. Thus, the decision maker assumes

that the patient is in some aggregated stage A1. Similarly, if the patient is in one of the health

stages 3H, 3L, or 4, the decision maker, not knowing the exact health stage of the patient, assumes

that the patient is in the aggregated stage A2. This means that the decision maker puts patients

in only one of two health stages as in the case of our mathematical formulation. This allows us to

consider a setting where the “reality” is complicated (as described in the simulation study) but

the decision maker follows the policies suggested by our mathematical analysis. Note that using

the aggregated stages requires estimation of transition probabilities among the aggregated stages

A1 and A2 as well as the death and survival stages 0 and 5. We explain how the decision maker

makes this estimation in Online Appendix A5.3.

Figure 3 Aggregated two-stage transition diagram for patient evolution in the ICU.

Aggregated Greedy Policy (AGP): This policy is the same as GP except that the policy is

applied over the aggregated classifications. When a patient from a particular aggregated stage is to

be discharged or admitted from the general ward, one of the patients from that aggregated health

stage is chosen randomly.
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Aggregated Ratio Policy (ARP): This policy is the same as RP except that the policy is

applied over the aggregated classifications. As in the case of AGP, when a patient from a particular

aggregated stage is to be discharged or admitted from the general ward, one of the patients from

that aggregated health stage is chosen randomly.

Aggregated Optimal Policy (AOP): When there are two health stages only and under the

additional assumptions that when there are no patient readmissions from the general ward and

patient arrival process is stationary, we can determine the optimal policy by solving the MDP

formulation described in Section 5. AOP basically uses the actions this optimal policy suggests

(when the arrival rate is set to the current arrival rate in the simulation model). As in the cases

of AGP and ARP, AOP randomly picks among the patients who belong to the same aggregated

health stage.

6.3. Results of the simulation study

In the simulation study, we considered two different DPCD values (3% and 5%), and three different

levels for the baseline ICU load (0.5, 0.8, and 1) as described in Section 6.1. Thus, in total, we

considered six different combinations. The performance measure for each policy π (described in

Section 6.2) was chosen to be the mortality rate, Mπ, which we define to be the percentage of

deaths among the patients who arrived at the ICU for possible admission during the 36-week

period. We generated 30 different transition probability scenarios for each one of the six DPCD-load

pairs as described in Section 6.1 and ran 100 replications for each scenario. In each replication, we

randomly determined the initial state of the system. Specifically, the number of patients initially

in the ICU was set assuming that the number is uniformly distributed over the integers from

0 to b and the health stage i of each patient is determined using the probability distribution

{θi, i∈ {1,2L,2H,3L,3H,4}}.

Using simulation results, we made pairwise performance comparisons between RP and every

other policy. Specifically, we calculated the mean value for Mπ −MRP for every policy π (over

the 100 replications) for each scenario and constructed a 95% confidence interval for the mean
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difference. In Figures 4, 5, and 6, we provide these confidence intervals along with the box plots,

where we also indicate the 1st and 3rd quantiles, the minimum, and the maximum values.

From the figures, we can observe that RP has a superior performance overall when compared

with the other policies. The good performance of RP is evident particularly when the comparison

is made with respect to benchmark policies FCFS, RDP, GP, and AGP and the load on the ICU

is very high. Given our mathematical analysis, the effect of system load on the performance of RP

is not surprising. As we discussed before, when the system load is high, policies like GP, which

exclusively takes into account the immediate benefit for the patients while ignoring system level

factors such as the expected length of stay for the patients, are more likely to perform badly.

If we compare RP with the aggregated-type policies ARP and AOP, we observe that, even though

these two policies perform better than the benchmarks, the performance of RP is again statistically

better with the differences in the performances getting larger as the load on the system increases.

Note that this comparison is important because as we discussed in Section 6.2, the model with

which we are making decisions (e.g., our mathematical model) could be simpler than the “reality”

(e.g., our simulation model as we assume in this paper). As the decision maker, we may not even

know which specific health stage the patient is in but could only have some rough idea about the

patient’s health condition. With this comparison, we see that there is a benefit to knowing the

health conditions of the patients in more detail especially when the system is heavily loaded.

To get a better sense as to why RP performs well and its performance gets better with increased

ICU load recall Proposition 1 (particularly part (b)), which provides a necessary and sufficient

condition for the optimality of RP for the special case where there is a single bed. According

to the proposition, RP is optimal if the arrival probability exceeds a particular level, i.e., if the

inequality (5) is violated. This suggests that in general RP could be more preferable when the ICU

is highly loaded. In our simulation study, there are multiple beds, the arrival probability changes

with time, and the inequality is written specifically for a model that assumes two health stages.

Therefore, Condition (5) is not well-defined in the context of our simulation model. However, one
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Figure 4 Pairwise comparisons of the differences in average mortality rates between other policies and RP for

each scenario with ρst = 0.5, where average is taken over 100 replications.

Figure 5 Pairwise comparisons of the differences in average mortality rates between other policies and RP for

each scenario with ρst = 0.8, where average is taken over 100 replications.

Figure 6 Pairwise comparisons of the differences in average mortality rates between other policies and RP for

each scenario with ρst = 1, where average is taken over 100 replications.
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can still get some general sense for whether or not the arrival probability is high enough to favor

RP by adjusting the arrival probability λ by λ/b, using the aggregated version of the transition

probabilities under each scenario, and then determining the percentage of time the inequality (5)

is violated. Following this procedure, we obtained Table EC.1 in Online Appendix A5.4.

As we can observe from the table, in many of the scenarios considered in our simulation study, the

fraction of time the adjusted version of Condition (5) is violated is either 1 or close to 1 providing

some explanation as to why RP has such a good performance. It is also important to note that as

the load on the system increases, the fractions under each scenario are also non-decreasing, which

might explain why the performance of RP is more dominant when ICU load is higher.

Going back to Figures 4, 5, and 6, another observation we can make is that among the aggregated-

type policies, ARP and AOP appear to perform better than AGP except for the case the load on the

ICU is the smallest. If we compare ARP with AOP, we see that even though the mean performance

of AOP is better than that of ARP for all ICU load levels, the differences are not statistically

significant. This suggests that even when patients can only be classified at the aggregate level as

described above and thus RP is not an option, using the policy that is optimal (for our stylized

formulation) may not be justified and the aggregated version of RP might be acceptable.

The observations that RP performs better than AOP and AOP does not seem to have a statis-

tically strong advantage over ARP highlight two important questions that are closely intertwined

with each other: In searching for the discharge/admit policy to use in practice, can we restrict

ourselves to policies that are state-independent? Given that the simulation study suggests that the

best policy is state-independent does Theorem 2, which states that in general the optimal policy

is of threshold-type, have any practical value? For several reasons, it is difficult to provide definite

answers to these questions. First of all, we know that AOP is optimal for our mathematical model

but this obviously does not mean that it would continue to perform well when we change the

underlying model from one with two health stages (as in the mathematical model) to one with six

health stages and a more complex transition structure (as in the simulation model). It is not even
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clear whether AOP is the best among all the aggregated-type policies one could use for the model

assumed in the simulation study. In short, AOP may not have performed as well as one would

hope but this does not rule out the possibility of the existence of a different state-dependent policy

that performs better. But more importantly, even though our patient health evolution formulation

assumed in the simulation study is highly likely to be an improvement over the one we assumed

in the mathematical model we do not know how well this particular model captures reality. As

we discussed in detail in Section 6.1, existing research on ICU patients is not at a level where we

have a clear understanding of how ICU patients can be classified and how their health conditions

evolve inside and outside the ICU. The model we used in the simulation study is only one possibil-

ity among the many plausible. Therefore, even though our simulation study provides some useful

insights and directions for future work it would not be reasonable to make immediate generaliza-

tions from our observations. With more research in this area, we will have an increasingly better

understanding of ICU patients and be able to develop models that are increasingly better repre-

sentations of reality. It is possible that with changes in the health evolution model, performances

of the policies relative to each other will also change and it will be prudent to construct potentially

good new state-dependent policies and investigate their performances. The insights that come out

of the optimal policy characterizations given in Theorem 2, which describe how the composition

of the patients in the ICU should influence admit/discharge decisions, can be very helpful in the

construction of such policies.

Even though our simulation study cannot provide a definite answer to the question of which

policy would work better in practice, the fact that RP had the best performance is good news. The

policy is simple, easily generalizable, intuitive, and does not need to keep track of system state

information. It is also important to note that the policy only requires the estimation of expected

net benefits and the expected lengths-of-stay for each health stage, not the individual transition

probabilities. This not only makes it much easier to implement RP in practice but also means that

the policy is highly robust to transition probability estimates and the assumptions made regarding

the underlying patient health and transition formulation.
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Finally, in this section, we investigate patients’ lengths-of-stay in the ICU under each policy.

Figures A2, A3, and A4 given in Online Appendix A5.5 summarize the results of our analysis. We

can observe from the figures that if we leave aside FCFS, there are no notable differences between

the policies with respect to average lengths of ICU stay. Long lengths-of-stay under FCFS is not

surprising because under that policy patients leave the ICU only when they are dead or they reach

the survival stage. They are never discharged early to accommodate other patients. Under any of

the other policies, patients can be discharged from the ICU even though they still need ICU care

and this results in shorter lengths-of-stay. We can also observe from the figures that the lengths-

of-stay under every policy except FCFS decrease as the ICU load increases. This is because except

in the case of FCFS, the more patients there are in need of ICU, the higher the chances that any

given patient’s ICU stay is cut short, which ultimately leads to shorter average lengths-of-stay.

7. Conclusions

Many studies reported that the number of ICU beds in many parts of the US and the rest of

the world are in short supply to sufficiently meet the daily ICU demand. It is frequently the case

that a patient who is relatively in a less critical condition is discharged early to make room for

another patient who is deemed more critical. While this bed shortage problem arises even under

daily operating conditions it is natural to expect the problem to get worse in case of an event like

an influenza epidemic, which causes a significantly increased number of patients in need of an ICU

bed. It is thus highly important to investigate how ICU capacity can be managed efficiently by

allocating the available beds to the patients in a way the greatest good is achieved for the greatest

number of the patients. Our goal in this paper has been to provide insights into and develop policies

for making such allocation decisions.

What mainly sets our analysis apart from prior work is that in our model we allow the patients

to move from one health stage to another and allocation decisions are made based on the patients’

updated health conditions. This formulation captures an important feature of the actual problem

and nicely fits with the triage protocol proposed by Christian et al. (2006). But more importantly,
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the model allowed us to go deeper and establish properties that appear to be difficult to identify

using formulations considered in prior work. For example, we were able to provide analytical results

for the case where patients who have higher expected ICU benefits also have longer expected length

of stay.

Our analysis of the single-bed scenario led to interesting insights into how optimal decisions

depend on the patients’ expected ICU benefit, expected length of stay, and the patient load on the

system. We found that when patients who are expected to benefit more from ICU treatment also

have longer expected length of stay, those patients should get higher priority only if the overall

patient demand is below a certain level. This is because when beds are in high demand, prioritizing

those patients (who are expected to occupy the beds longer) would require turning too many

patients away from the ICU that it becomes more preferable to adopt a policy that has quicker bed

turnaround times even though the expected net benefit is smaller for every admitted patient. More

generally, when the ICU has finitely many beds, we found that the optimal policy aims for an ideal

mix in the ICU so as to hit the right balance between the overall expected net ICU benefit per

patient and length of stay. That is, in general, the optimal policy for prioritizing among patients

depends on the mix of patients in the ICU.

Considering the complexity of the actual decision problem we are interested in, the mathematical

model we analyze in this paper is stylized and therefore it is natural to question the generaliz-

ability of the main insights. Indeed, our simulation study, which, unlike the mathematical model,

allows readmissions from the general ward and considers a more complex patient health evolution

formulation, suggests that there may not be a justification for searching for a complex policy that

prioritizes based on the patient mix in the ICU. On the other hand, the simulation study also

shows that some of the policies that are proposed based on our mathematical analysis performs

well even under the more general conditions of the simulation model. The fact is that not enough is

known about the ICU patients for us to be able to construct a very realistic description of patient

evolution. The more complex model considered in the simulation study is another simplification



Ouyang, Argon, and Ziya: Allocation of ICU Beds in Periods of High Demand
34 Article submitted to Operations Research; manuscript no. OPRE-2015-12-707

at best. Therefore, not only the conjectures on the generalizability of the policies should be taken

with a grain of salt, but one should also not quickly conclude from our simulation study that in

practice there is no need to consider policies that take patient mix into account. Nevertheless, our

results provide some confidence that despite the complexity of the decision problem in practice,

relatively simple policies might work well and the paper provides some useful guidance for what

future research and data collection efforts should focus on in order to develop useful patient clas-

sification and triage protocols and ultimately decision support tools that can be implemented in

practice.
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Örmeci, E.L., A Burnetas. 2005. Dynamic admission control for loss systems with batch arrivals. Advances

in Applied Probability 37(4) 915–937.
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