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I n service systems with heterogeneous customers, prioritization with respect to the relative importance of customers is
known to improve certain performance measures. However, in many applications, information necessary to determine

the importance level of a customer may not be available immediately but can be revealed only through some preliminary
investigation, which is sometimes called triage. This triage process is typically error-prone and may take substantial
amount of time, and hence, it is not always clear if and when it should be implemented for purposes of priority assign-
ment. To provide insights into this question, we study a stylized queueing model with a single server and two types of
customers with hidden type identities, which differ in their rates of service and waiting costs. By means of a Markov deci-
sion formulation, we first show that the optimal dynamic policy on triage is characterized by a switching curve. The com-
parison of two state-independent policies (no-triage and triage-all) shows that the information from triage is more
beneficial when the traffic intensity is neither too low nor too high. Our numerical results show that the system manager
should consider implementing a state-dependent triage policy when the probability of classifying a customer into the
important class and the mean triage time are of moderate size, when the difference between the importance levels of the
two classes of customers is large, and/or when the traffic intensity is high.
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1. Introduction

In many service systems, it is common practice to give
priority to a group of customers for service in order to
improve key performance measures. Call centers,
banks, and hospitals are just a few examples where pri-
oritization of customers is prevalent. For some of these
service systems, where the customer base is widely
heterogeneous, it is not difficult to see why prioritiza-
tion should work. For example, emergency depart-
ments of hospitals typically receive patients with a
large variety of ailments ranging from life-threatening
conditions such as heart attack to minor issues such as
common cold, and thus, categorizing patients accord-
ing to their urgency levels and prioritizing accordingly
is crucial. Yet, there are many other systems where
arriving customers, at first glance, appear to be more
or less homogeneous, and thus, it is not clear how pri-
oritization can be implemented or if it would be benefi-
cial at all for them. For these systems, however, there
may be ways to put some effort into collecting informa-
tion from arriving customers to differentiate them from

the rest of the population. But then a natural question
arises: Is it worthwhile to spend additional time col-
lecting information on a customer before service so as
to implement a priority policy, or is it better to stick
with a commonly used non-priority policy like first-
come-first-served (FCFS)? Of course, the answer to this
question would be very much case dependent. In this
study, we aim to shed some light onto this fundamen-
tal question by analyzing a stylized mathematical
model that captures the trade-off between time lost in
identifying priority customers and opportunity lost by
not prioritizing them. In particular, we would like to
obtain some general insights into conditions under
which it is worthwhile spending time to collect infor-
mation to differentiate customers. We are also inter-
ested in the effects of system parameters on the triage
decisions such as the arrival rate and the time it takes
to collect information.
There are several application areas where insights

from such an analysis would be useful – especially
within the field of healthcare operations. Consider
operations at a radiological service center where

172

Vol. 31, No. 1, January 2022, pp. 172–193 DOI 10.1111/poms.13494
ISSN 1059-1478|EISSN 1937-5956|22|3101|0172 © 2021 Production and Operations Management Society

http://orcid.org/0000-0002-1576-3372
http://orcid.org/0000-0002-1576-3372
http://orcid.org/0000-0002-1576-3372
http://orcid.org/0000-0002-6814-0849
http://orcid.org/0000-0002-6814-0849
http://orcid.org/0000-0002-6814-0849
http://orcid.org/0000-0003-1558-6051
http://orcid.org/0000-0003-1558-6051
http://orcid.org/0000-0003-1558-6051


radiologists seated in front of computer workstations
process jobs sequentially. Radiologists are medical doc-
tors specialized in interpreting diagnostic images by
X-rays, ultrasound, computed tomography (CT), mag-
netic resonance imaging (MRI), etc. In most cases,
technicians are the ones who meet with patients and
take these diagnostic images – not the radiologists.
Once the images are taken, they are sent to a radiolo-
gist’s queues for interpretation. Each job in a radiolo-
gist’s queue corresponds to a collection of images
taken for a patient. As discussed in Ibanez et al. (2018),
which uses data from one of the largest outsourced
radiological services (teleradiology) firms in the Uni-
ted States, radiologists may at times use discretion to
change the order of jobs in their queue and deviate
from FCFS if they believe that reordering jobs would
increase their efficiency. However, the authors
acknowledge that radiologists spend extra time for a
preliminary review of jobs before reordering them and
show by an empirical study that the benefits of
reordering a queue may not always compensate for
the time spent searching and identifying priority jobs.
Another similar application is from operations in a
genetic testing laboratory, where geneticists interpret
patients’ test results that arrive continually and queue
up at their desks. According to our personal communi-
cation with a geneticist (Tolun 2018), similar to radiol-
ogists, they also spend additional time on preliminary
review of their jobs at times to reorder them based on
concerns about urgency and inefficiency.
This information/delay trade-off also arises in the

daily operations of emergency departments (EDs)when
a physician makes a decision on which patient to treat
next among all the patients who have been triaged by
nurses and are waiting to be seen by physicians. When
a physician becomes available to see a new patient, she
will login the ED information system and choose one
from the list of patients in the waiting room based on
their urgency levels and wait times (see, e.g., Ding et al.
2019). A recent study (Li et al. 2020) finds that when a
large number of ED beds are occupied by admitted
patients awaiting transfer to inpatient beds, physicians
start to prioritize patients who will likely be discharged
after treatment at ED, to avoid further blocking the ED.
To do so, physicians first reviewdetails of patientswait-
ing to be seen, including vital signs, demographics,
early test results, etc., through the ED information sys-
tem. This process takes time, but it helps predict the dis-
position of patients (i.e., admit or discharge) and make
the prioritization decision to achieve better system per-
formance. Note that the information collection in this
example refers to the process of a physician reviewing
medical information of patients and classifying them by
their dispositions. It is not the triage process done by
triage nurses upon a patient’s arrival at the ED,which is
undisputably necessary.

In this study, to identify conditions under which
spending additional time for classification and priori-
tization is beneficial, we analyze a single-server
queueing system where customers can be from one of
two types with the type of a customer determining
the penalty incurred for each unit of time spent in the
system. In this model, customers arrive to the system
according to a stationary Poisson process and their
type information is unknown upon arrival. The server
has two options: either serve a customer directly with-
out collecting any information on its type or triage,
that is, investigate the type information of customers
and classify them into two classes accordingly, before
serving them. (Our model allows for imperfect classi-
fication, i.e., the server may make mistakes in classify-
ing customers.) Based on this classification, the server
can prioritize them for service in accordance with the
system’s objective, that is, minimizing the long-run
average cost. We provide more specifics about our
queueing model and discuss how we formulate the
decision problem that the server faces as a Markov
decision process in Sections 3 and 4.
This information/delay trade-off has not received

much attention in queueing and operations literature
except for papers by Sun et al. (2018) and Levi et al.
(2019a,b), which we review in detail in Section 2 and
which do not consider arrivals of customers. To the
best of our knowledge, this study is the first to study
the information/delay trade-off by considering non-
negligible triage times in a priority queue setting. On
the operations management literature, our results
provide useful insights to managers who consider
triage for prioritizing certain groups of customers. For
example, we obtain a simple expression for a lower
bound on the mean triage time such that if the
expected time to triage a customer is higher than this
bound, then it is not worthwhile to triage at all and
forego prioritization. In cases where triage is suffi-
ciently fast and hence worth implementing, we show
that instead of performing triage on all customers, it
is better to triage incoming customers only when the
number of unclassified customers is sufficiently large
compared to the total number of customers in the sys-
tem. Both our numerical and theoretical analysis
show that arrival rate has an important effect on the
triage decision, which differentiates our work from
Sun et al. (2018) and Levi et al. (2019a,b) since their
models do not have arrivals. More specifically,
through the comparison of two simple state-
independent policies (no-triage and triage-all), we
find that the information from triage is more benefi-
cial when the traffic intensity is neither too low nor too
high and there is a good mix of type 1 and type 2 cus-
tomers. Through extensive numerical studies, we
found that as the traffic intensity increases, the subop-
timality of state-independent policies increases
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especially for cases where the performance of the no-
triage policy is similar to that of triage-all policy.
Hence, when traffic intensity is light, triage can be
bypassed. When traffic intensity is moderate to high,
a more-complex state-dependent triage policy is
needed if the two state-independent policies do not
differ much in performance; otherwise, the best state-
independent policy is fine.
The outline of the study is as follows. We provide a

review of the relevant literature in Section 2 and
details of our mathematical model in Section 3. Our
analytical results are presented in Sections 4 and 5.
(Proofs of these results are deferred to the Appendix.)
In Section 6, we investigate when and how much
state-dependent policies are better than state-
independent ones through a numerical study. We also
test the robustness of our insights with respect to the
preemption assumption. Section 7 concludes the
study with a discussion on the most important man-
agerial insights derived from this work.

2. Literature Review

Priority queues have been studied extensively under
the assumption that types of all customers are known
perfectly. In particular, under linear waiting costs, an
index policy, namely the cμ rule, has been shown to
be optimal by Smith (1956), Cox and Smith (1961),
and Kakalik and Little (1971). According to the cμ
rule, a customer of type j has priority over a customer
of type k if and only if cjμ j > ckμk, where ci and μi are
the cost and service rates of a type i customer, respec-
tively. A cμ-type index policy is further shown to be
optimal under various settings, see, for example, Kli-
mov (1974), Harrison (1975), Tcha and Pliska (1977),
Pinedo (1983), and Budhiraja et al. (2014). For a com-
prehensive introduction on this topic, see Pinedo
(2008). When the delay cost is convex, a generalized
version of the cμ rule is shown to be asymptotically
optimal, see Van Mieghem (1995) and Mandelbaum
and Stolyar (2004). However, when the type identities
of customers are not known perfectly, the service pro-
vider may prioritize the incorrect customers. Argon
and Ziya (2009) consider this possibility and study
the problem of priority assignment in a queueing sys-
tem under the assumption that the type information
of each customer is imperfect but this information is
readily available. Saghafian et al. (2014) consider the
possibility of misclassification in the context of patient
prioritization in emergency departments but they do
not focus on the question of whether to triage or not.
The studies discussed above all make the assump-

tion that the type information (perfect or not) is read-
ily available to the server upon a customer’s arrival or
at decision epochs. There are few studies that assume
that the type information of customers are unknown

but the server can choose to perform tests to obtain
this information. Alizamir et al. (2013) consider a
model where a single server classifies each arriving
customer into one of two classes based on the results
of a series of independent tests and the decision is to
determine the number of tests to be performed to
minimize the total cost of congestion and classifica-
tion inaccuracy. Wang et al. (2010) study the opera-
tions of diagnostic service centers, where the service
corresponds to performing diagnoses. The objective
of this paper is to strike a balance between diagnostic
accuracy, system congestion, and staffing costs by
finding the appropriate capacity and service depth
that are set before the system starts running, and
hence, independently of changing congestion levels.
All of these papers aim to balance costs associated
with congestion and inaccuracy in classification and
neither uses class information for prioritization of cus-
tomers as in this work.
Our work is most relevant to three recent papers

that study resource allocation with information acqui-
sition for purposes of customer prioritization. Dobson
and Sainathan (2011) compare two service systems:
one system has sorters who collect information on a
customer and then prioritize it before being served by
processors, and the other system has only processors.
In Dobson and Sainathan (2011), sorting and process-
ing are done by different servers. In contrast, a single
server is responsible for both actions in our model.
Moreover, Dobson and Sainathan (2011) focus on sta-
tic design questions while we investigate both the best
static policies and optimal dynamic policies. Sun et al.
(2018) investigate the patient triage and prioritization
decisions in the aftermath of mass casualty events.
Triage provides information on the urgency and ser-
vice requirements, which are necessary for patient
prioritization but at the cost of extra delay to patient
treatment. Sun et al. (2018) show that the optimal
triage decision can be characterized by a switching
curve and provide a closed-form expression for this
curve. Levi et al. (2019a,b) study a similar informa-
tion/delay trade-off with multiple classes of cus-
tomers and show that the structure of the optimal
policy is again of threshold type. They develop near-
optimal algorithms to solve the problem and quantify
the value of information obtained through testing.
Our work also studies the information/delay trade-
off but in a queueing setting with external arrivals to
the system in contrast to the clearing systems studied
in Sun et al. (2018) and Levi et al. (2019a). The exis-
tence of an arrival process and the goal of minimizing
the long-run average costs make the problem signifi-
cantly more difficult to analyze. Specifically, the prob-
lems studied in Sun et al. (2018) and Levi et al.
(2019a) are essentially optimal stopping problems
under the optimal policy, which is no longer true for
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the problem under study in this paper, and hence, a
fundamentally different approach is needed to char-
acterize the optimal policy. In addition, we explicitly
model the possibility of misclassification in our
model, and our results also provide intuition on how
the traffic intensity affects the service provider’s deci-
sion on triage.
Finally, we should note that our work also shares

some high-level similarities with other streams of
work including studies on (i) two-tier service systems,
see, for example, Shumsky and Pinker (2003); (ii)
cross-selling in a call center setting, see, for example,
Armony and Gurvich (2010); (iii) strategic behaviors
under different levels of information, see, for exam-
ple, Guo and Zipkin (2007); (iv) learning information
through service, see, for example, Xu et al. (2015),
Bimpikis and Markakis (2019). The models studied in
these papers all have some level of information disclo-
sure or learning, but the research focus is very differ-
ent from ours.

3. Model Description

Consider a service system with a single server and two
types of customers, namely, type 1 and type 2. Cus-
tomers arrive at the system according to a Poisson pro-
cess with rate λ > 0, and they wait in an infinite-
capacity queue if the server is busy upon arrival. We
refer to the new customers that have not been attended
as “class 0” customers. Class 0 customers are a mixture
of type 1 and type 2 customers but their true types are
not known to the server. We assume that each class 0
customer belongs to type 1 with probability p1 ∈ ð0, 1Þ
and to type 2 with probability p2 ≡ 1 � p1:
The server can serve a class 0 customer without

knowing its type, but s/he also has the option of
spending some time on investigating the type of this
customer before service, and classifying the customer
as “class 1” or “class 2.” The investigation time of a
customer is exponentially distributed with mean u > 0,
and is independent of the arrival process and the cus-
tomer’s type. In the rest of the study, we use the term
triage to refer to the process of investigating the type of
a customer and classifying the customer based on that
information. Define θi as the probability of classifying a
type i customer as class i ∈ {1, 2}. Also, let qi be the
probability of classifying a class 0 customer as class
i ∈ {1, 2}. Then, we have q1 ¼ p1θ1þp2ð1�θ2Þ and
q2 ¼ p1ð1 � θ1Þ þ p2θ2:
Let hi ≥ 0 denote the (finite) per unit time cost that

a type i customer incurs during its stay in the system
for i = 1, 2. Let also ri be the expected cost per unit
time of a class i customer in the system for i = 0, 1, 2.
It is then easy to show that r0 ¼ p1h1þp2h2, r1 ¼
ðp1θ1h1þp2ð1�θ2Þh2Þ=q1, and r2 ¼ ðp1ð1�θ1Þh1þ
p2θ2h2Þ=q2: Note that r0 ¼ q1r1þ q2r2, i.e., r0 is a

convex combination of r1 and r2: Therefore, r0 is either
equal to both r1 and r2, or it is strictly between them.
We assume that service times of class i customers are

independent and identically distributed exponential
random variables with finite mean τi > 0, i ¼ 0, 1, 2:
For analytical tractability, our theoretical results
assume that a preemptive discipline is used, that is,
the server has the option of changing its action at any
given time. This assumption may not be realistic.
Indeed, most services are performed in a non-
preemptive manner including in our motivating
examples from healthcare. However, later in the
study, we study the non-preemptive case by means of
a numerical study and show that our insights
obtained for the preemptive discipline hold robustly
under non-preemption.
Under the assumptions introduced above, at any

point in time, there can be at most three classes of cus-
tomers in the system with possibly different cost rates
and service time distributions. The server can either
serve one of these three classes of customers or can
triage a class 0 customer into one of the two other
classes. Our objective is to find policies that minimize
the expected long-run average waiting costs.
In Section 4, we formulate this optimization prob-

lem as a Markov decision process (MDP) and provide
characterizations of the optimal policy. Before we pre-
sent these results, we would like to briefly discuss
how the mathematical model defined above captures
the main components of the motivating examples pre-
sented in Section 1. First of all, the existence of two
types of customers in our model with differing
holding cost rates captures the idea that the system
controller values the wait of certain customers in the
system more than the wait of others. The different ser-
vice times mean that some customers require less
efforts to complete, and switching the order of service
may improve system efficiency. The positive triage
time in our model represents that to determine the
urgency (or “importance”) of a customer, or to esti-
mate the customer’s service time, the server performs
a brief preliminary review, which provides imperfect
information on this customer’s type and urgency but
takes some time. More specifically, Tolun (2018) states
that a geneticist may categorize a case to be urgent if
s/he sees a suspicious test result during such a pre-
liminary review, which takes some random amount
of time and can lead to misclassification. Li et al.
(2020) also note that a physician may spend some
time to extract and review patients’ information from
ED information system, in order to estimate a
patient’s disposition and based on which the physi-
cian picks the next patient for treatment. Ibanez et al.
(2018) find that processing tasks after triage is associ-
ated with superior performance, yet the time cost of
reorganizing the queue may make triage inefficient
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and not worth it. All three examples are consistent
with our modeling assumptions on the non-negligible
triage times and the possibility of misclassification.

4. Optimal Dynamic Policies

To formulate the optimal control problem under study
as a Markov decision process, let S ≡ x ≡ ðx0, x1, x2Þ :f
xi ≥ 0, i ¼ 0, 1, 2g be the state space, where xi is the
number of customers in class i. To define the action
space, note that at any given time the server can take
one of the following four actions: S0 – serve a class 0
customer without triage (if x0 ≥ 1); S1 – serve a class 1
customer (if x1 ≥ 1); S2 – serve a class 2 customer (if
x2 ≥ 1); and Tr – triage a class 0 customer (if x0 ≥ 1).
One can easily show that idling is suboptimal when
there is at least one customer in the system due to the
preemption assumption. Hence, the action space is
given by ≡ fS0, S1, S2, Trg.
We next let

gðπ, xÞ≡ lim sup
t!∞

Vtðπ, xÞ
t

, 8x∈S, (1)

be the expected long-run average cost, where
Vtðπ, xÞ is the total expected cost up to time t
starting from state x under policy π, which is a
sequence of decision rules that map S to and
that specifies the action taken at any state and
time. Then, the optimal expected long-run average
cost is defined as

g�ðxÞ≡ inf
π

gðπ, xÞ, 8x∈S: (2)

We first show the existence of an optimal stationary
and deterministic policy π� that satisfies (2). Let ei
be the ith row of a 3 × 3 identity matrix (i = 1, 2, 3),
0 be a 1 × 3 vector of all zeros, and r ≡ ðr0, r1, r2Þ>
be a column vector of cost rates. We next apply uni-
formization with the uniformization constant
ϕ≡ λþu�1þ∑2

i¼0 τ
�1
i as in Lippman (1975). Without

loss of generality, we can redefine the time unit so
that ϕ = 1, and thus, λ, u�1, and τ�1

i become,
respectively, the probability that the next uni-
formized transition is an arrival, triage completion,
and service completion of a class i customer, where
i = 0, 1, 2. Let v(x) be the relative cost function
defined as the difference between the total expected
cost starting from state x and a reference state (e.g.,
state 0). The long-run average cost optimality equa-
tions can be written as vðxÞþg ¼ LvðxÞ, 8x∈S,
where g is the optimal average cost per period of
time after uniformization, and the operator L is
defined as:

LvðxÞ ¼ λvðxþ e1Þþmin u�1½q1vðx� e1þ e2Þ
�

þq2vðx� e1þ e3Þ�þ ðτ�1
0 þ τ�1

1 þ τ�1
2 ÞvðxÞ, τ�1

0 vðx� e1Þ
þðu�1þ τ�1

1 þ τ�1
2 ÞvðxÞ, τ�1

1 vðx� e2Þþðu�1þ τ�1
0 þ τ�1

2 Þ
vðxÞ, τ�1

2 vðx� e3Þþðu�1þ τ�1
0 þ τ�1

1 ÞvðxÞ�
þx � r, if x ≠ 0, (3)

Lvð0Þ¼ λvðe1Þþðu�1þ τ�1
0 þ τ�1

1 þ τ�1
2 Þvð0Þ, (4)

where vð�Þ : S! I and we assume that v(x) = ∞
for x∉S for notational convenience. The first term
in the right-hand side of (3) represents the devia-
tion of the cost-to-go from the optimal average
cost g associated with a new arrival and the last
term represents the expected cost occurred until
the next transition. The terms inside the minimiza-
tion represent the deviation of cost-to-go from g
associated with taking action Tr, S0, S1, S2,
respectively. (Note that the last part of each of the
four terms in the minimization represents a
“dummy” transition due to uniformization, where
the system state remains unchanged.) We are now
ready to present Proposition 1. (The proofs of
Proposition 1 and all other analytical results are
provided in the Appendix.)

PROPOSITION 1. Assume that λτ0 < 1. Then, there exist a
function hð�Þ :S! IR and a non-negative constant g�

that satisfy the average-cost optimality inequalities

hðxÞþg� ≥ LhðxÞ, 8x∈S, (5)

where g�ðxÞ ¼ g� for all x∈S. Moreover, there exists an
optimal stationary deterministic policy that achieves the
minimum in (3).

The condition λτ0 < 1 in Proposition 1 ensures
that the system is stable. Under this condition,
Proposition 1 implies that there exists an optimal
stationary deterministic policy with long-run aver-
age cost g� that is independent of the initial state.
The following theorem provides a partial character-
ization of this optimal policy π� to the average-cost
problem defined in (2). In general, it is possible
that there is more than one optimal action for any
given state. If that is the case, for consistency, we
choose the optimal action in the following order:
S1, S0, Tr, and S2.

THEOREM 1. Suppose that λτ0 < 1 and r1=τ1 ≥ r0=τ0 ≥
r2=τ2. Then, there exists an optimal stationary determin-
istic policy that solves the long-run average cost problem
in (2) and takes the following form:
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1. When x1 ≥ 1, the optimal action is S1, that is,
always serve a class 1 customer when there is at
least one.

2. The optimal action is S2 only when x0 ¼ x1 ¼ 0 and
x2 ≥ 1, that is, a class 2 customer should be served
only when there is no other class of customers.

3. If u þ q1τ1þ q2τ2 ≥ τ0, r0uþq1r1τ1þq2r2τ2 ≥ r0τ0,
and

u≥ ~u ≡
q1ðr1τ0� r0τ1Þ

r0
, (6)

then the optimal action is S0, that is, a class 0 cus-
tomer should be served without triage, in x∈S
with x0 ≥ 1 and x1 ¼ 0:

4. If τ0 ¼ τ1 ¼ τ2 ¼ τ, u< ~u, and

λ≤
1

τþu
1� r2

ð~u=u�1Þr0þ r2

� �
, (7)

then for all x∈S with x1 ¼ 0 and x0 ≥ 1, there
exists a threshold x�2ðx0Þ such that if x2 < x�2ðx0Þ,
the optimal action is Tr, that is, triage a class 0
customer; otherwise, the optimal action is S0, that
is, a class 0 customer should be served without
triage. Furthermore, x�2ðx0Þ is a non-decreasing
function of x0:

In Theorem 1, we assume without loss of generality
that r1=τ1 ≥ r2=τ2, that is, class 1 customers are more
“important” than class 2 customers. Since class 0 cus-
tomers are a mixture of customers of class 1 and class
2, it is reasonable to assume that r0=τ0 is between r1=τ1
and r2=τ2, that is, class 0 customers are more impor-
tant than class 2, but less important than class 1. Con-
sistent with the classical cμ rule, parts (i) and (ii) of
Theorem 1 show that at any given time and state, it is
optimal to give class 1 customers the highest priority
and class 2 customers the lowest priority, respec-
tively. When there are no class 1 customers but at
least one class 0 customer, then the server should
attend a class 0 customer – either to triage the cus-
tomer or to serve the customer directly without triage
– in accordance with the structure identified in parts
(iii) and (iv) of Theorem 1. More specifically, Theo-
rem 1 (iii) shows that when triage takes a significant
amount of time (so that the three conditions on u
hold), the optimal policy simplifies to a state-
independent policy that never performs triage on any
class 0 customer and that directly serves them. The
intuition is that the benefit of triage and prioritization
diminishes when triage takes a significant amount of
time, and hence, customers have to endure longer
waits due to triage. Conditions in part (iii) give a pre-
cise description of what we mean by triage taking a sig-
nificant amount of time. The first condition implies that

it takes more time in expectation to first triage than
serve a class 0 customer than to serve the customer
without triage. Similarly, the second condition means
that the expected cost charged while processing a
class 0 customer is higher if it is triaged and served
than if it is directly served. (Both conditions are auto-
matically satisfied when τ0 ¼ τ1 ¼ τ2.) Additionally,
by writing the right-hand side of condition (6) as
q1τ0τ1ðr1=τ1� r0=τ0Þ=r0, we can see that skipping triage
altogether would become optimal when there is not
much difference in holding costs per unit of service
between class 0 and class 1 customers, that is, the
value of r1=τ1� r0=τ0, is low.
On the other hand, when the opposite of (6) is true

and the service times for all customers are identically
distributed, and the arrival rate is sufficiently low (as
in Equation (7)), then the optimal policy is of
threshold-type. In particular, when there are no class
1 customers in the system, then it is optimal to triage
a class 0 customer if the number of class 2 customers
is below a critical value, and serve a class 0 customer
directly without triage when the number of class 2
customers in the system is sufficiently large. Figure 1
demonstrates this threshold structure by means of
a numerical example. The intuition behind this
threshold-type structure is that when there are many
class 2 customers waiting for service, the value of type
information obtained through triage could not com-
pensate for the additional delay (as a result of triage)
that the remaining customers will have to suffer.
Hence, the optimal action is to skip triage. Further-
more, Theorem 1 (iv) shows that the threshold x�2ðx0Þ
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Figure 1 Visual Depiction of the Optimal Policy when x 1 ¼ 0,
λ ¼ 0:6, h1 ¼ 10, h2 ¼ 1, τ0 ¼ 1, τ1 ¼ 0:9, τ2 ¼ 0:95,
θ1 ¼ θ2 ¼ 0:9, u ¼ 0:3, and p1 ¼ 0:5: Value-Iteration Algo-
rithm with State Space Truncation at Queue Capacity 100 is
Used to Find the Optimal Policy
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is non-decreasing in x0 when the arrival rate is
bounded as in (7). The implication is that when there
are more class 0 customers waiting in queue, the cost
reduced by identifying and prioritizing an important
customer is greater, which in turn means greater tol-
erance to the delay cost incurred by the less important
customers in the system. It is important to note that
although we need condition (7) to prove Theorem 1
(iv), the result may still hold under a weaker condi-
tion. In particular, note that (7) in fact is a sufficient
condition for the system to be stable under all work-
conserving and non-idling policies. More specifically,
if (7) is satisfied, then λ(τ + u) < 1, which ensures that
the queueing system under every work-conserving
and non-idling policy is stable. In a numerical study
for stable queueing systems, despite trying a large
number of scenarios, we were not able to find any
case where x�2ðx0Þ decreases with x0 or is non-
monotone. We also want to point out that our numeri-
cal experiments show that the threshold structure of
the optimal policy may also hold for heterogeneous
service times with distinct τ0s, although we can only
prove it under the assumption of identical service
times. Figure 1 is an illustration of the optimal policy
when the mean service times are different.

REMARK 1. Note that Theorem 1 has a similar struc-
ture to the main results in Sun et al. (2018). How-
ever, the proof is much more challenging than that
for clearing systems as studied in Sun et al. (2018).
The optimality proof for the dynamic threshold pol-
icy in Sun et al. (2018) reduces to an optimal stop-
ping problem because there are no future arrivals.
When there is an arrival stream as in our motivat-
ing examples from healthcare, this trick can no
longer be used. Hence, a whole new approach is
needed, which requires intricate sample-path argu-
ments and tedious algebra. In particular, to prove
Proposition 1 and Theorem 1, we first prove similar
existence and structural results for the correspond-
ing discounted-cost problem that minimizes the
total discounted cost over an infinite horizon; see
Appendix A. We then use results from Section 7.2
of Sennott (1999) to extend these results to the
average-cost problem by letting the discount factor
go to zero; see Appendix B.

5. State-independent Policies

In Section 4, we showed that the optimal policy for
the long-run average cost problem defined in (2) is
state dependent and also provided an intuitive expla-
nation as to why this is the case. However, in many
applications, the system managers either triage all
customers or do not triage at all, perhaps because of
practicality or perception of fairness underlying these

simple policies. Therefore, in this section, we explore
the set of state-independent policies, that is, policies
that only use the state information as to whether xi is
zero or not for i = 0, 1, 2. Indeed, Theorem 1 implies
that it is possible that under certain conditions (such
as those in Theorem 1 (iii)), state-independent policies
can be even optimal. We start by defining two such
policies that are of particular interest.

1. No-Triage Policy (NT): A non-idling policy,
under which no customer goes through triage.

2. Triage-Prioritize-Class-1 Policy (TP1): A non-
idling policy, under which all customers are
triaged, class 1 customers receive priority over
all customers, and class 2 customers receive
the lowest priority. Hence, if a customer is
classified as class 1, it is served immediately,
and class 2 customers are served only when
there are no customers from another class in
the system.

PROPOSITION 2. When r1
τ1
≥ r2

τ2
, ρ≡ λðuþq1τ1þq2τ2Þ<

1, uþq1τ1þq2τ2 ≥ τ0, r0uþq1r1τ1þq2r2τ2 ≥ r0τ0, and
u2þq1τ1ðτ1þuÞþq2τ2ðτ2þuÞ≥ τ20, among all state-
independent and deterministic policies, the policy that
achieves the minimum long-run average cost is either
TP1 or NT.

Under some reasonable assumptions, Proposition
2 shows that it is sufficient to only consider policies
NT and TP1 to find an optimal policy that mini-
mizes the expected long-run average cost within the
set of all deterministic state-independent policies.
The first condition r1

τ1
≥ r2

τ2
means that class 1 cus-

tomers are more important than class 2 customers,
which is without loss of generality and consistent
with our assumptions in Theorem 1. The stability of
the system under policy TP1 is guaranteed by ρ < 1.
The next three conditions, respectively, imply that it
takes more time for service in expectation, costs
more during service, and results in a higher service
time variance to first triage then serve a class 0 cus-
tomer than to serve the customer directly without
triage.
Besides being simple, easy-to-implement and

potentially optimal, NT and TP1 can also serve as
benchmarks for any proposed dynamic policy. In the
remainder of this section, we compare these two
state-independent policies in terms of their expected
long-run average costs. Denote the expected long-run
average cost under policy π by cπ:
We first derive closed-form expressions for cNT and

cTP1. For λτ0 < 1, the system under NT is a stable M/
M/1 queue with arrival rate λ and mean service time
τ0, and hence, from known results on M/M/1 queues
(see, e.g., Section 7.3.1 in Kulkarni (2010)), we have
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cNT ¼ λτ0r0
1� λτ0

: (8)

It is not however straightforward to obtain an
expression for cTP1. Therefore, we state it as a propo-
sition and provide a proof in Appendix C.

PROPOSITION 3. Assume that ρ < 1. Then, we have

cTP1 ¼ λ2ðu2þq1uτ1þq1τ
2
1Þr0

1� λðuþq1τ1Þ
þ λðr0uþq1r1τ1Þ

þλq2r2 uþ τ2þρ½uþ τ2� λuτ2� λq1τ1ðτ2� τ1Þ�
ð1�ρÞ½1� λðuþq1τ1Þ�

� �
:

(9)

Note that under TP1, there can be only two classes
of customers in the queue in steady state: class 0 and
class 2 customers. The first and second terms in (9)
correspond to the long-run average holding cost of
class 0 customers in queue and in service, respec-
tively, while the third term corresponds to the long-
run average cost of keeping class 2 customers in
queue and service.
Our next result provides a comparison between NT

and TP1, and hence, a characterization of the optimal
policy within the set of deterministic state-
independent policies when conditions of Proposition
2 hold.

THEOREM 2. Assume that ρ < 1 and uþq1τ1þ q2τ2
≥ τ0.

1. Suppose that r0uþq1r1τ1þq2r2τ2 ≥ r0τ0. There exist
two thresholds λ and �λ such that cNT ≤ cTP1 if and
only if λ ≤ λ or λ≥ �λ, where 0< λ≤ �λ< ðuþq1τ1þ
q2τ2Þ�1 and all other system parameters are fixed.

2. Suppose that r0uþq1r1τ1þq2r2τ2 ≥ r0τ0, u
2þ

q1τ1ðτ1þuÞþq2τ2ðτ2þuÞ≥ τ20, and τ0 ¼ τ2. There
exist two thresholds p

1
and �p1 such that cNT ≤ cTP1

if and only if p1 ≤ p
1
or p1 ≥ �p1, where 0 ≤ p

1
≤

�p1 ≤ 1 and all other system parameters are fixed.
3. Suppose that τ0 ¼ τ2. cNT ≤ cTP1 if and only if

r2=τ2
r1=τ1

≥Θ1, where

Θ1 ≡
q1τ1ðq2τ2Þ�1ð1�ρÞ½λq2τ0τ1�ð1�λτ1þλ2τ0τ1Þuþτ0�τ1�

ð1�λτ0Þ½τ0þð1�λτ0Þu�λq1τ1ðτ0�τ1Þ��ð1�ρÞ½1�λðuþq1τ1Þ�½τ0�ð1�λτ0Þu�
h iþ

and ½x�þ ≡maxð0, xÞ:

Most assumptions needed for Theorem 2 are the
same as those for Proposition 2 and hence will not be
discussed here. The only additional assumption
needed is that we require τ0 ¼ τ2 for parts (ii) and (iii)
of Theorem 2, that is, class 0 and class 2 customers
have identically distributed service times but may be

different from that of class 1. Although we have
numerical evidence that this assumption is not neces-
sary, we were not able to prove these results without
it. However, note that this assumption may not be too
restrictive especially for our motivating examples as
we explain next. Under policy TP1, a class 0 customer
will be served immediately if it is triaged as a class 1
whereas a class 0 customer triaged into class 2 will
only get served when all class 0 customers are triaged
and served. (This has also been shown to be optimal
in Theorem 1 (i) and (ii).) It is then reasonable that the
information from triage affects the service time of a
class 1 customer because service of a class 1 immedi-
ately follows its triage. On the other hand, the infor-
mation collected on a customer who is triaged into
class 2 and served later should have little impact on
its service, since the server may forget this informa-
tion by the time this customer’s service starts.
A visual illustration of parts (i) and (ii) of Theorem 2

is provided in Figure 2. Note that we plot this figure
with heterogeneous service times, that is, τ0is are dis-
tinct. The structure in this figure is proved under the
assumption τ0 ¼ τ2, but we believe it holds under
weaker conditions. Theorem 2 (i) shows the effect of
the arrival rate on the choice between NT and TP1,
and hence, in a way, on the value of the information
obtained through triage. More specifically, it would
be worthwhile to triage all customers only when the traf-
fic is moderate; otherwise, that is, when the traffic is light
or heavy, it is better to skip triage for all customers. The
intuition is that when the traffic is light, then the wait
time any customer has to endure to get served is toler-
able, and hence, the benefit from prioritization is not

Figure 2 Best Deterministic State-Independent Policy when h1 ¼ 10,
h2 ¼ 1, τ0 ¼ 1, τ1 ¼ 0:9, τ2 ¼ 0:95, u ¼ 0:2, and θ1 ¼
θ2 ¼ 0:9: All Conditions of Proposition 2 are Satisfied in this
Plot

Sun, Argon, and Ziya: Priority Scheduling of Unknown Customers
Production and Operations Management 31(1), pp. 172–193, © 2021 Production and Operations Management Society 179



worth the extra cost incurred by triaging all cus-
tomers. When the arrival rate is high, the wait times
will be long and triaging all class 0 customers will
make the wait times even longer, thus, it would be
better to serve the customers without triage. From the
expressions of cNT and cTP1 in Equations (8) and (9),
we can numerically compute the interval ðλ, �λÞ,
which tells us the range of λ where subjecting all cus-
tomers to triage is better than skipping it altogether.
Part (ii) of Theorem 2 implies that TP1 outper-

forms NT when there is a balanced mix of both types
of customers, that is, the value of p1 is neither too
high nor too low. The intuition is that when the
value of p1 is very low or very high, either important
customers are so rare that triage rarely ends up iden-
tifying them or they are so dominant that triage
rarely helps eliminate the less important customers
for immediate service.
In part (iii) of Theorem 2, it can be shown that

Θ1 > 0 if and only if u< ðλq2τ0τ1þ τ0� τ1Þ=
ð1� λτ1þ λ2τ0τ1Þ; see proof of Theorem 2 (iii). Hence,
to triage all customers is better than to triage none
when the mean triage time is sufficiently small and
the importance level between the two classes is signif-
icantly different (i.e., r2=τ2

r1=τ1
<Θ1, where Θ1 < 1 by

Corollary 1 below).
We next use Theorem 1 (iii) and Theorem 2 (iii) to

obtain Corollary 1, which provides guidance as to
when triage should be considered. Figure 3 provides
a pictorial description of this result.

COROLLARY 1. Suppose that r1
τ1
≥ r0

τ0
≥ r2

τ2
, ρ < 1, uþ q1τ1þ

q2τ2 ≥ τ0, r0uþq1r1τ1þq2r2τ2 ≥ r0τ0, u
2þ q1τ1ðτ1þuÞþ

q2τ2ðτ2þuÞ≥ τ20, and τ0 ¼ τ2. Let Θ2 ≡
q1τ1ðτ0�q1τ1�uÞ
q2τ2ðq1τ1þuÞ

h iþ
,

where Θ1 ≤Θ2 < 1 for any u > 0.

1. If r2=τ2
r1=τ1

≥Θ2, then there is no policy (state-
dependent or -independent) that has a lower long-
run average cost than NT.

2. If Θ1 ≤ r2=τ2
r1=τ1

<Θ2, then there is no deterministic
state-independent policy that has a lower long-run
average cost than NT.

3. If r2=τ2
r1=τ1

<Θ1, then there is no deterministic state-
independent policy that has a lower long-run aver-
age cost than TP1.

Corollary 1 and Figure 3 provide useful managerial
insights into when triage should be ruled out and when
it should be considered. First, when u≥ τ0�q1τ1, then
Θ2 ¼ 0, and hence by Corollary triage should not be
used at all. This simple condition has an intuitive expla-
nation: The benefit of triage mainly comes from the pri-
oritization of “important” customers, which are class 1
customers since their importance level r1=τ1 is the largest
among all customers. However, triage comes at the cost
of making all customers in the system wait for an extra u
units of time on average. Taking both the cost and benefit
of triage into account,

q1r1
uþq1τ1

can be interpreted as the
expected importance level of a customer who would be
triaged as class 1. Given that r0 ¼ q1r1þq2r2 ≥ q1r1, the

condition uþq1τ1 > τ0 implies that r0
τ0
>

q1r1
uþq1τ1

, i.e., a

class 0 customer becomes less “important” after triage
even if s/he would be triaged as class 1. Hence, there
is no benefit in triage and NT is optimal.
Second, if triage is fast enough so that Θ2 > 0, then

one should consider the heterogeneity of customer
classes in terms of their differences in their “impor-
tance levels,” measured by ri=τi, i ¼ 1, 2, to decide
whether to triage or not. More specifically, if
r2=τ2
r1=τ1

∈ ½Θ2, 1Þ, that is, the two classes of customers do
not differ significantly from one another, then triage
should be ruled out completely; otherwise, some
level of triage can be useful. If the management finds
that triage can be useful but is not willing to imple-
ment a dynamic policy but wants to rather employ
simple state-independent and deterministic policies,
they should again rule out triage if r2=τ2

r1=τ1
∈ ½Θ1, Θ2Þ.

Finally, if r2=τ2
r1=τ1

<Θ1, for example, when triage is fast,
arrival rate is moderate, and/or there is a significant
difference between the “importance levels” of the
two classes, then to triage every customer is a better
alternative to triage nobody – although there can be
a better state-dependent triage policy in such a situa-
tion.

6. Numerical Study

In this section, we aim to investigate two main
research questions through a numerical study. First,
we have shown that the optimal policy could be a
state-dependent policy that only triages incoming
customers when the number of unclassified

Figure 3 Optimality of NT and TP1 as a Function of r 2=τ2
r 1=τ1

Sun, Argon, and Ziya: Priority Scheduling of Unknown Customers
180 Production and Operations Management 31(1), pp. 172–193, © 2021 Production and Operations Management Society



customers in the system is sufficiently large. How-
ever, we do not know when and how much these
more complex policies are better than simpler state-
independent policies such as the triage-all policy TP1.
Second, our theoretical results are developed under
the preemptive service discipline, and hence, we
would like to test whether our insights hold under
non-preemptive service.

6.1. Study Settings
When obtaining the performance for the optimal pol-
icy numerically, we retain the Markovian structure of
the problem throughout our numerical experiments,
and assume service and triage times are exponentially
distributed. Without loss of generality, we set both
the mean service time τ2 and the cost incurred per
unit time by a class 2 customer r2 to one. We continue
to assume that customers of class 1 are more impor-
tant than that of class 0, which are more important
than that of class 2, that is, r1=τ1 ≥ r0=τ0 ≥ r2=τ2 ¼ 1. To
examine the impact of the relative importance among
different classes of customers, we consider three dif-
ferent values of r1=τ1, specifically {2, 5, 10}. We also
set τ1 ¼ 0:9 and choose τ0 from {1, 1.05}, which means
that information from triage reduces the mean service
time for class 1 customers, but not necessarily for class
2 customers (see the discussion following Theorem 2
for why this would be a practical setting). Under
assumptions uþq1τ1þq2τ2 ≥ τ0 and r0uþq1r1τ1þ
q2r2τ2 ≥ r0τ0, we know that the state-independent pol-
icy NT is optimal when u ≥ ~u by Theorem 1 (iii). Since
we are interested in when and how much improve-
ment an optimal dynamic policy can bring, in our
experimental setup, we restrict the mean triage time
u to be lower than ~u. More specifically, we set
u ¼ ûþηð~u� ûÞ, where û ≡ maxfτ0�q1τ1�q2τ2, τ0�
q1r1τ1=r0�q2r2τ2=r0g and η ∈ {0.1, 0.3, 0.5, 0.7, 0.9} (so
that assumptions of Theorems 1 and 2 on u are satis-
fied and u ≤ ~u). We consider five different values for
q1, that is, the probability of classifying a customer as
class 1, from the set {0.1, 0.3, 0.5, 0.7, 0.9}. To examine
the impact of different traffic levels, we choose λ so
that ρ ¼ λðuþq1τ1þq2τ2Þ is in {0.3, 0.5, 0.7, 0.9}.
Finally, we conduct all experiments under both pre-
emptive and non-preemptive service disciplines. As
a result, we consider a total of 2 × 3 × 5 × 4 ×
5 × 2 = 1200 scenarios in this numerical study.
The long-run average costs of NT (with or without

preemption) and TP1 under preemption are com-
puted by (8) and (9), respectively. To numerically
compute the optimal long-run average cost for the
underlying MDP formulation with an infinite state
space, we needed to truncate the state space. More
specifically, we applied the value-iteration algorithm
to compute the optimal long-run average cost under
the assumption that the system capacity is N, that is,

at any given time the total number of customers in the
system ∑2

i¼0 xi does not exceed N and a customer that
arrives when the system is full, that is, ∑2

i¼0 xi ¼ N, is
lost. The long-run average costs of the optimal policy
and TP1 under the non-preemptive discipline are
computed under the same state space truncation.
Clearly, such a truncation mechanism would result in
only an approximation for the long-run average cost
of each policy. To have a certain level of confidence in
the accuracy of these approximate results, we varied
the system capacity N from 60 to 120 in increments of
20 and obtained the long-run average cost of each pol-
icy for each scenario. We found that for all 1200 sce-
narios described above and the numerical precision
we report in this section, the results were the same for
N = 100 and higher. Hence, all results presented in
this section are based on computations for N = 100.

6.2. Numerical Results
Tables 1 through 4 show the percentage increase in
the expected long-run average cost by using the best
of NT and TP1 – either to skip triage altogether (i.e.,
NT) or to triage all incoming customers to give the
highest priority to class 1 customers and the lowest
priority to class 2 customers (i.e., TP1) – over the opti-
mal policy under the preemptive service discipline
for all 1200 scenarios described above. In all four
tables, cells corresponding to scenarios where NT
(TP1) is the best policy between NT and TP1 are
shaded (unshaded). Next, we discuss our observa-
tions from these tables on the impact of each of the
system parameters and the robustness of the insights
with respect to the preemption assumption.

6.2.1 Impact of the Expected Triage Time (u)
and the Probability of Being Class 1 (q1). We
observe a large variation among scenarios with
respect to the level of suboptimality of the best state-
independent policy between NT and TP1. More
specifically, when the value of u is low and that of q1
is high, or when the value of u is high and that of q1 is
low, there is not much to be gained by using a
dynamic policy over using a state-independent pol-
icy. In particular, for each fixed pair of ρ and r1=τ1
considered, NT is the better one between NT and TP1
when the value of η (and thus u) is high and the value
of q1 is low (see the upper right corner of the ðq1, ηÞ
quadrant), and it does not perform much worse than
the optimal dynamic policy. Similarly, TP1 is better
than NT when the value of η (and thus u) is low and
the value of q1 is high (see the lower left corner of the
ðq1, ηÞ quadrant) and performs similarly to the opti-
mal policy. On the other hand, scenarios where the
best of NT and TP1 performs the worst lie close to the
border between shaded and unshaded cells. A closer
look at the parameters reveal that for these cells, r2=τ2

r1=τ1
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is close to Θ1, which means that neither TP1 nor NT
dominates the other significantly; see part (iii) of The-
orem 2. Hence, the proximity of r2=τ2

r1=τ1
to Θ1 can be used

as a criterion to decide whether it is worthwhile to
implement a more complex dynamic policy over a
state-independent one.

6.2.2 Impact of the Importance Level (r1=τ1).
From Tables 1 and 2, we observe that as r1=τ1
increases (i.e., as the “importance” of class 1 cus-
tomers increases), the gap between the optimal
dynamic policy and the best of NT and TP1 becomes
larger in general, except for some scenarios where the
value of η (thus the triage time) is low and q1 repre-
sents a good mix of class 1 and class 2. Since r2=τ2 is a
constant, the results imply that when class 1 cus-
tomers become more “important” than class 2

customers, then an optimal dynamic policy that
makes state-dependent triage decisions brings greater
benefit compared to state-independent policies. How-
ever, if the triage time is sufficiently short and there is
a good mix of customers, then the triage-all policy
(TP1) is nearly optimal and the optimality gap
becomes smaller as customers become more different
in their “importance” levels.

6.2.3 Impact of the Traffic Intensity (ρ), the
Service Times, and the Preemptive Assumption.
We observe that as the traffic intensity increases, the
gap between the optimal dynamic policy and the best
of NT and TP1 becomes larger in general, especially
for the scenarios that lie close to the border between
the shaded and unshaded cell, that is, when r2=τ2

r1=τ1
is

close to Θ1. We have fixed the mean service times of

Table 1 Percentage Increase in the Expected Long-Run Average Cost by Using the Best of NT and TP1 Over the Optimal Policy Under Preemptive
Service for τ0 ¼ 1, τ1 ¼ 0:9, τ2 ¼ 1, r 2 ¼ 1, and ρ ∈ {0.3, 0.5, 0.7, 0.9}. Policy NT (TP1) is the Best Between NT and TP1 in the Shaded
(Unshaded) Cells

η 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

ρ = 0.3 ρ = 0.5
r 1=τ1 ¼ 2
q1 ¼ 0:1 1.54 0.88 0.36 0.06 0.00 1.69 1.52 0.75 0.22 0.01
q1 ¼ 0:3 2.83 2.04 0.86 0.14 0.00 2.64 3.85 1.92 0.54 0.01
q1 ¼ 0:5 2.33 2.53 1.13 0.19 0.00 1.95 3.62 2.73 0.87 0.03
q1 ¼ 0:7 1.31 1.92 1.21 0.23 0.00 1.01 1.56 2.37 1.35 0.09
q1 ¼ 0:9 0.41 0.44 0.49 0.56 0.12 0.31 0.33 0.36 0.39 0.47

r 1=τ1 ¼ 5
q1 ¼ 0:1 4.62 2.96 1.10 0.15 0.00 4.67 5.29 2.40 0.59 0.01
q1 ¼ 0:3 4.37 5.23 1.91 0.23 0.00 4.10 9.78 4.66 1.04 0.01
q1 ¼ 0:5 2.19 5.38 2.09 0.28 0.00 1.98 5.10 5.60 1.33 0.01
q1 ¼ 0:7 0.80 2.77 1.93 0.31 0.00 0.63 1.33 3.11 1.73 0.03
q1 ¼ 0:9 0.19 0.21 0.27 0.49 0.00 0.14 0.16 0.18 0.21 0.35

r 1=τ1 ¼ 10
q1 ¼ 0:1 6.34 5.12 1.77 0.20 0.00 6.52 9.56 4.08 0.85 0.00
q1 ¼ 0:3 4.16 7.32 2.52 0.27 0.00 3.60 9.93 6.60 1.31 0.00
q1 ¼ 0:5 1.75 6.80 2.58 0.32 0.00 1.30 4.64 7.30 1.65 0.01
q1 ¼ 0:7 0.44 2.84 2.25 0.34 0.00 0.35 0.95 3.01 1.95 0.03
q1 ¼ 0:9 0.10 0.11 0.43 0.46 0.00 0.07 0.08 0.09 0.11 0.23

ρ = 0.7 ρ = 0.9
r 1=τ1 ¼ 2
q1 ¼ 0:1 2.21 2.03 1.06 0.40 0.04 4.76 2.31 1.15 0.48 0.09
q1 ¼ 0:3 3.27 5.70 2.92 1.13 0.11 11.37 6.48 3.45 1.47 0.29
q1 ¼ 0:5 2.17 5.14 4.70 1.88 0.25 10.84 10.66 5.79 2.61 0.75
q1 ¼ 0:7 0.83 1.77 3.34 3.31 1.04 4.67 11.67 8.38 4.12 1.60
q1 ¼ 0:9 0.20 0.21 0.25 0.32 0.51 0.99 1.29 2.13 3.63 4.31

r 1=τ1 ¼ 5
q1 ¼ 0:1 6.79 7.38 3.62 1.16 0.06 15.19 8.54 4.33 1.61 0.19
q1 ¼ 0:3 6.09 13.72 7.97 2.36 0.08 28.21 21.89 10.85 3.86 0.33
q1 ¼ 0:5 2.65 6.40 10.58 3.47 0.15 15.45 31.62 15.90 5.95 0.61
q1 ¼ 0:7 0.62 1.54 3.02 4.78 0.43 4.50 11.14 18.48 8.67 1.62
q1 ¼ 0:9 0.09 0.11 0.12 0.17 0.30 0.60 0.39 1.14 2.03 3.77

r 1=τ1 ¼ 10
q1 ¼ 0:1 9.66 14.13 6.59 1.85 0.05 31.71 17.43 8.57 2.88 0.21
q1 ¼ 0:3 5.59 12.74 12.28 3.29 0.06 27.53 38.44 18.39 6.04 0.33
q1 ¼ 0:5 1.82 4.74 8.98 4.68 0.14 11.80 24.01 24.81 9.07 0.71
q1 ¼ 0:7 0.32 0.87 1.86 3.89 0.44 2.61 6.52 10.84 12.42 1.90
q1 ¼ 0:9 0.05 0.06 0.06 0.08 0.12 0.05 0.86 0.33 0.70 1.76
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classes 1 and 2 customers but vary that of class 0 cus-
tomers from τ0 ¼ 1 (results in Table 1) to τ0 ¼ 1:05 (re-
sults in Table 2). We observe that the gap between the
optimal policy and the best of NT and TP1 becomes
smaller when the service times of customers are
reduced more by triage. Finally, Tables 3 and 4 show
that all insights obtained from our numerical analysis
with preemption continue to hold when the preemp-
tion assumption is relaxed. Interestingly, we find that
the best of NT and TP1 performs closer to the optimal
policy under non-preemptive service discipline.
In summary, the system manager should consider

implementing a state-dependent triage policy when
r2=τ2
r1=τ1

is close to Θ1 (e.g., when the values of q1 and u are
neither too high nor too low), when the heterogeneity
in the importance levels of customers is high, and/or
when the traffic intensity is high. The gap between

the optimal policy and the best of NT and TP1 can be
over 30% in some scenarios.

7. Conclusion

In this study, we studied a fundamental question
many service systems with heterogeneous customers
and arrivals face: When is it worthwhile to spend
additional time to triage customers before service to
improve the priority order of customers for process-
ing? To find an answer to this question, we analyzed
a stylized, single-server queueing model with two
types of customers both analytically and numerically.
This analysis resulted in several useful managerial
insights. First, we found that implementing a triage
policy for purposes of prioritization should not be
considered if triage takes a significantly large amount

Table 2 Percentage Increase in the Expected Long-Run Average Cost by Using the Best of NT and TP1 Over the Optimal Policy Under Preemptive
Service for τ0 ¼ 1:05, τ1 ¼ 0:9, τ2 ¼ 1, r 2 ¼ 1, and ρ ∈ {0.3, 0.5, 0.7, 0.9}. Policy NT (TP1) is the Best Between NT and TP1 in the Shaded
(Unshaded) Cells

η 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

ρ = 0.3 ρ = 0.5
r 1=τ1 ¼ 2
q1 ¼ 0:1 1.68 1.25 0.90 0.61 0.34 2.77 2.18 1.70 1.29 0.97
q1 ¼ 0:3 3.75 1.86 0.89 0.17 0.00 3.33 4.29 2.29 0.84 0.07
q1 ¼ 0:5 3.23 2.55 1.20 0.23 0.00 2.52 3.62 3.38 1.25 0.11
q1 ¼ 0:7 1.90 2.26 1.35 0.45 0.00 1.45 1.73 2.26 2.50 0.68
q1 ¼ 0:9 0.60 0.63 0.65 0.68 0.74 0.45 0.47 0.49 0.51 0.54

r 1=τ1 ¼ 5
q1 ¼ 0:1 4.86 2.65 1.09 0.17 0.00 5.06 4.84 2.37 0.62 0.01
q1 ¼ 0:3 4.53 5.01 1.93 0.25 0.00 4.29 8.71 4.68 1.09 0.01
q1 ¼ 0:5 2.45 5.26 2.14 0.31 0.00 2.09 4.19 5.78 1.42 0.02
q1 ¼ 0:7 1.03 2.14 2.06 0.35 0.00 0.82 1.23 2.17 2.15 0.06
q1 ¼ 0:9 0.26 0.28 0.30 0.37 0.04 0.20 0.22 0.23 0.25 0.28

r 1=τ1 ¼ 10
q1 ¼ 0:1 6.71 4.81 1.76 0.22 0.00 6.49 9.11 4.02 0.89 0.01
q1 ¼ 0:3 3.88 7.11 2.53 0.29 0.00 3.57 8.86 6.67 1.36 0.00
q1 ¼ 0:5 1.57 6.09 2.64 0.34 0.00 1.32 3.69 7.49 1.74 0.01
q1 ¼ 0:7 0.57 2.12 2.37 0.38 0.00 0.46 0.71 2.07 2.34 0.05
q1 ¼ 0:9 0.14 0.15 0.16 0.58 0.02 0.10 0.11 0.12 0.13 0.15

ρ = 0.7 ρ = 0.9
r 1=τ1 ¼ 2
q1 ¼ 0:1 1.96 2.46 2.09 1.62 1.29 4.63 3.33 2.38 1.69 1.19
q1 ¼ 0:3 2.91 5.59 3.61 1.91 0.76 10.46 6.08 3.54 1.92 0.97
q1 ¼ 0:5 2.10 4.12 5.67 2.94 1.11 8.44 10.59 6.13 3.21 1.49
q1 ¼ 0:7 1.01 1.57 2.61 4.17 2.41 3.67 9.07 9.34 5.21 2.58
q1 ¼ 0:9 0.29 0.30 0.31 0.35 0.42 0.15 1.12 1.60 2.63 4.38

r 1=τ1 ¼ 5
q1 ¼ 0:1 5.81 7.13 3.55 1.33 0.12 13.44 7.83 4.22 1.83 0.35
q1 ¼ 0:3 5.34 11.96 7.96 2.61 0.12 24.39 21.44 10.84 4.05 0.44
q1 ¼ 0:5 2.38 5.57 9.70 3.89 0.23 13.22 29.11 16.39 6.45 0.85
q1 ¼ 0:7 0.67 1.30 2.44 4.27 0.81 3.63 9.51 16.32 9.77 2.60
q1 ¼ 0:9 0.13 0.14 0.16 0.18 0.23 0.08 0.68 0.91 1.54 3.00

r 1=τ1 ¼ 10
q1 ¼ 0:1 8.65 13.48 6.46 1.91 0.07 29.82 16.68 8.26 2.99 0.28
q1 ¼ 0:3 4.84 11.03 12.37 3.47 0.08 24.34 38.15 18.35 6.31 0.40
q1 ¼ 0:5 1.57 4.00 7.56 5.08 0.19 10.11 21.59 25.44 9.51 0.88
q1 ¼ 0:7 0.37 0.70 1.41 2.73 0.70 2.06 5.49 9.51 13.72 2.84
q1 ¼ 0:9 0.07 0.08 0.08 0.09 0.10 0.04 0.08 0.20 0.47 1.10
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of time in comparison to the actual service. This result
is not surprising but we were able to derive a simple
condition to decide whether triage is too long to
implement: If uþq1τ1 > τ0, that is, the expected time it
takes to triage a customer and serve her immediately
after triage when classified as important is larger than
the expected time it takes to serve a customer without
triage, then triage should be ruled out. If we find that
triage is not that long, then we show that one needs to
also take into account the heterogeneity of customers
in the population in terms of their perceived value to
the system and their service times to decide whether
triage should be implemented.
By means of a Markov decision process formula-

tion, we show that when the service times of all cus-
tomers are identical and it is worthwhile to triage, the
optimal triage policy is dependent on the number of

customers in the system. More specifically, the opti-
mal policy does not in general triage all arriving cus-
tomers but only when the number of unclassified
customers is sufficiently large in comparison with the
number of other customers in the system. In other
words, if the number of unclassified customers is
lower than a certain threshold, then it is better to
directly serve these customers right away instead of
classifying them by triage.
Although the optimal triage policy should be state

dependent in general, the comparison of the triage-all
policy and the no-triage policy provides insights for
managements that see value in a triage policy but do
not want to employ a complex state-dependent one.
This analysis resulted in an explicit necessary and suf-
ficient condition to determine whether triage-all is
better than no-triage.

Table 3 Percentage Increase in the Expected Long-Run Average Cost by Using the Best of NT and TP1 Over the Optimal Policy Under Non-
Preemptive Service for τ0 ¼ 1:0, τ1 ¼ 0:9, τ2 ¼ 1, r 2 ¼ 1, and ρ ∈ {0.3, 0.5, 0.7, 0.9}. Policy NT (TP1) is the Best Between NT and TP1 in
the Shaded (Unshaded) Cells

η 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

ρ = 0.3 ρ = 0.5
r 1=τ1 ¼ 2
q1 ¼ 0:1 0.42 0.21 0.06 0.01 0.00 0.76 0.58 0.21 0.04 0.00
q1 ¼ 0:3 0.82 0.48 0.13 0.01 0.00 0.90 1.43 0.51 0.09 0.00
q1 ¼ 0:5 0.30 0.60 0.19 0.02 0.00 0.35 1.99 0.76 0.14 0.00
q1 ¼ 0:7 0.03 0.59 0.23 0.03 0.00 0.04 0.48 1.01 0.23 0.00
q1 ¼ 0:9 0.00 0.00 0.01 0.09 0.00 0.00 0.00 0.01 0.05 0.15
r 1=τ1 ¼ 5
q1 ¼ 0:1 1.41 0.66 0.16 0.01 0.00 3.19 1.87 0.61 0.09 0.00
q1 ¼ 0:3 2.35 1.13 0.25 0.02 0.00 3.21 3.54 1.11 0.15 0.00
q1 ¼ 0:5 1.83 1.19 0.30 0.02 0.00 1.52 4.10 1.37 0.20 0.00
q1 ¼ 0:7 0.29 1.01 0.31 0.03 0.00 0.10 2.81 1.54 0.26 0.00
q1 ¼ 0:9 0.00 0.01 0.29 0.05 0.00 0.00 0.00 0.04 0.53 0.01
r 1=τ1 ¼ 10
q1 ¼ 0:1 2.36 1.08 0.23 0.02 0.00 4.97 3.16 0.95 0.12 0.00
q1 ¼ 0:3 3.17 1.51 0.32 0.02 0.00 3.92 4.93 1.46 0.17 0.00
q1 ¼ 0:5 2.40 1.46 0.35 0.03 0.00 1.88 5.20 1.71 0.23 0.00
q1 ¼ 0:7 0.61 1.17 0.35 0.03 0.00 0.07 3.55 1.78 0.30 0.00
q1 ¼ 0:9 0.00 0.11 0.30 0.05 0.00 0.00 0.00 0.27 0.50 0.01

ρ = 0.7 ρ = 0.9
r 1=τ1 ¼ 2
q1 ¼ 0:1 1.57 1.09 0.45 0.11 0.00 3.10 1.60 0.71 3.90 1.69
q1 ¼ 0:3 2.00 2.91 1.18 0.27 0.00 8.94 4.57 1.99 0.61 0.02
q1 ¼ 0:5 1.11 4.19 1.83 0.45 0.01 9.99 7.47 3.30 1.03 0.04
q1 ¼ 0:7 0.20 1.09 2.67 0.77 0.02 3.90 10.95 5.03 1.63 0.11
q1 ¼ 0:9 0.00 0.00 0.03 0.13 0.40 0.09 0.62 1.71 3.47 2.18
r 1=τ1 ¼ 5
q1 ¼ 0:1 5.75 3.66 1.39 0.26 0.00 11.85 5.85 2.40 0.59 0.01
q1 ¼ 0:3 5.19 7.73 2.82 0.51 0.00 26.27 13.82 5.47 1.22 0.01
q1 ¼ 0:5 2.19 7.85 3.85 0.77 0.00 14.11 20.12 8.27 1.98 0.03
q1 ¼ 0:7 0.28 2.43 4.72 1.14 0.01 4.08 11.10 11.47 3.43 0.10
q1 ¼ 0:9 0.00 0.00 0.04 0.19 0.23 0.05 0.37 1.07 2.35 1.10
r 1=τ1 ¼ 10
q1 ¼ 0:1 8.38 6.47 2.28 0.38 0.00 25.13 10.87 4.17 0.88 0.01
q1 ¼ 0:3 5.48 11.42 4.01 0.65 0.00 24.77 22.21 8.40 1.69 0.01
q1 ¼ 0:5 2.13 7.90 5.10 0.97 0.00 10.73 24.06 12.08 2.82 0.03
q1 ¼ 0:7 0.17 2.67 5.83 1.40 0.01 2.46 7.24 13.42 4.66 0.11
q1 ¼ 0:9 0.00 0.00 0.02 0.46 0.18 0.01 0.13 0.44 1.10 1.21
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From our numerical experiments, we observed that
this condition can also inform when to prefer
dynamic triage policies. In particular, the system
manager should consider implementing a state-
dependent triage policy when the probability of clas-
sifying a customer into the important class and the
mean triage time are of moderate size, when the dif-
ference between the importance levels of the two
classes of customers is large, and/or when the traffic
intensity is high. The gap between the optimal policy
and the best of NT and TP1 can be over 30% in some
scenarios.
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Appendices

We provide proofs of our theoretical results in the
appendices. In particular, in Appendix A, we pro-
vide the MDP formulation of our optimal control
problem under the objective of minimizing the
total discounted cost over an infinite horizon and
we prove certain structural results for its optimal
solution. In Appendix B, we extend the structural
properties of the value functions for the infinite-
horizon total discounted cost problem to the long-
run average cost problem to prove Proposition 1
and Theorem 1. Finally, the proofs of analytical
results presented in Section 5 are provided in
Appendix C.

Appendix

A. Discounted Cost Problem

Let Xπ
i ðtÞ be the number of class i customers

(i = 0, 1, 2) in the system at time t ≥ 0 under policy π.
The infinite-horizon discounted-cost problem is to
find a policy π that minimizes

VπðxÞ¼E

Z ∞

0

e�αt ∑
2

i¼0

riX
π
i ðtÞdt xj

� �
, (A1)

where x is the initial system state and α > 0 is the
continuous-time discount rate. We next apply uni-
formization with the uniformization constant

ϕ ¼ λþu�1þ∑2
i¼0 τ

�1
i þα as in Lippman (1975).

Without loss of generality, we can redefine the time
unit so that ϕ = 1. Then, the T-period total dis-
counted cost under policy π is
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Vπðx,TÞ¼E ∑
T

t¼1

γt ∑
2

i¼0

riX
π
i ðtÞ xj

� �
, (A2)

where the discounting factor is

γ ≡ λþu�1þτ�1
0 þτ�1

1 þτ�1
2

αþλþu�1þτ�1
0
þτ�1

1
þτ�1

2

¼ 1�α; see Figure 11.5.3 in

Puterman (2005). The uniformized discrete-time ver-
sion of the decision problem in (A1) is to find a pol-
icy π that minimizes

VπðxÞ¼ lim
T!∞

Vπðx,TÞ: (A3)

Let vðxÞ ¼ infπV
πðxÞ be the minimum total dis-

counted cost starting from state x. The optimality
equations for the total discounted cost problem
defined in (A1) can be written as vðxÞ ¼ LvðxÞ, 8x
∈S, where L is defined in (3) and (4). Now, we are
ready to first show the existence of an optimal policy
that minimizes the total discounted cost over an infi-
nite horizon.

PROPOSITION 4. There exists an optimal stationary deter-
ministic policy that solves the discounted-cost problem
(A1), and the optimality equation v(x) = Lv(x), for x∈S,
has a unique and finite solution v(�) that corresponds to the
total discounted cost under this optimal policy.

Proof. We prove Proposition 4 by checking the con-
ditions of Theorem 11.5.3 in Puterman (2005). It is
obvious that the state space S is countable and the
action space at state x, denoted by , is finite for

each x∈S: If we let c ≡ λþu�1þ∑2
i¼0 τ

�1
i <∞, then

Assumption 11.5.1 in Puterman (2005) holds because
c≥maxx;afβðx, aÞg and 1−q(x|x, a) < 1, where β(x, a)
is the transition rate when action a is chosen in state
x in the underlying continuous-time MDP and
qðx0jx, aÞ denotes the transition probability from
state x to x0 when action a is chosen for the embed-
ded chain underlying the continuous-time MDP.
Next, we show that there exists a positive real-
valued function w(x) satisfying minx∈SwðxÞ> 0 such
that Assumptions 6.10.1 and 6.10.2 in Puterman
(2005) hold. Let wðxÞ ¼ maxf1, x0þx1þx2g for
x∈S: Then, minx ∈SwðxÞ ¼ 1> 0: Let r(x, a) be the
expected immediate reward gained when action a
is taken in state x, then we have rðx, aÞ≡
�r0x0� r1x1� r2x2, and for all x∈S,

Hence, Assumption 6.10.1 is satisfied. For
j ¼ ð j0, j1, j2Þ and x∈S,

∑
j ∈S

pðjjx, aÞwðjÞ¼ ∑
j ∈S

pðjjx, aÞmaxf1, j0þ j1þ j2g ≤

∑
j∈S

pðjjx, aÞmaxf1, x0þx1þx2þ1g,

where p(j|x, a) is the transition probability to state j
when action a is taken in state x for the discrete-time
MDP after uniformization, and the inequality holds
because every period the number of customers in the
system can change by at most one. Thus,

Hence, part (a) of Assumption 6.10.2 is satisfied. For
any policy π, integer J ≥ 1 and 0 ≤ c < 1, we have

cJ ∑
j∈S

PJ
πðjjxÞwðjÞ ¼ cJ ∑

j∈S
PJ
πðjjxÞmaxf1, j0þ j1þ j2g≤

cJ ∑
j ∈S

PJ
πðjjxÞmaxf1, x0þx1þx2þ Jg

¼ cJðx0þx1þx2þ JÞ≤ cJðJþ1ÞwðxÞ, 8x∈S,

where PJ
πðjjxÞ is the (x, j)th component of the J-step

transition probability matrix under policy π and the
first inequality holds because the number of cus-
tomers in the system can change by at most one
every period. As long as J is sufficiently large, we

know that 0≤ cJðJþ1Þ< 1: Let a ¼ cJðJþ1Þ, we have

cJ∑j∈SP
J
πðjjxÞwðjÞ≤ awðxÞ, and part (b) of Assump-

tion 6.10.2 is satisfied.

The following theorem provides a partial character-
ization of the optimal policy to problem (A1). Here,
we denote the action taken at state x under the opti-
mal policy by a�ðxÞ:

THEOREM 3. Assume that r1=τ1 ≥ r0=τ0 ≥ r2=τ2: There
exists an optimal stationary deterministic policy that
solves the discounted-cost problem defined in (A1) and
takes the following form:

1. If x1 ≥ 1, then a�ðxÞ ¼ S1, i.e., a class 1 customer
should be served.

2. a�ðxÞ ¼ S2, i.e., a class 2 customer should be
served, only when x0 ¼ x1 ¼ 0.

3. Suppose that q1r1τ1=ð1þατ1Þþq2r2τ2=ð1þατ2Þþ
r0u ≥ r0τ0 and q1τ1=ð1þατ1Þþ q2τ2=ð1þατ2Þþ
u≥ τ0: When x0 ¼ 1 and x1 ¼ 0, a�ðxÞ ¼ S0, i.e.,
the class 0 customer should be directly served.

4. Suppose that q1r1τ1=ð1þατ1Þþq2r2τ2=ð1þατ2Þþ
r0u ≥ r0τ0 and q1τ1=ð1þατ1Þþ q2τ2=ð1þατ2Þþ
u≥ τ0: If
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u ≥ ~uðαÞ≡ q1ðr1τ0� r0τ1Þ=½ð1þατ1Þr0�, (A4)

then a�ðxÞ ¼ S0 for all x∈S with x0 ≥ 2 and
x1 ¼ 0, i.e., a class 0 customer should be directly
served.

5. Suppose that τ0 ¼ τ1 ¼ τ2 ¼ τ, ατ2=ð1þατÞ<
u< ~uðαÞ,

λ≤
1

τþu
1� r2

ð~uð0Þ=u�1Þr0þ r2

� �
, (A5)

and 0< α< u�1� λ. For x1 ¼ 0 and x0 ≥ 1, there exists
a threshold x�2ðx0Þ such that if x2 < x�2ðx0Þ, then
a�ðxÞ ¼ Tr, i.e., a class 0 customer should be triaged;
otherwise, a�ðxÞ ¼ S0, i.e., a class 0 customer should be
served without triage. Furthermore, x�2ðx0Þ is a non-
decreasing function of x0:

To prove Theorem 3, we first prove the following
lemma:

LEMMA 1. For any policy π1 that triages a class 0 cus-
tomer in initial state x∈S when u> τ0, there exists a
policy π2 that directly serves that class 0 customer, and
for which Vπ1ðx, TÞ≥Vπ2ðx, TÞ for any T ≥ 1.

Proof. For any initial state x ∈S with x0 ≥ 1, con-
sider policy π1 that triages a class 0 customer at
t = 0. We also consider policy π2 based on π1 but
serves a class 0 customer directly at t = 0. There
are two possible scenarios: (i) If the service of the
class 0 customer under π2 is not completed at
t = 1, then in the corresponding sample path, the
triage in π1 does not finish at t = 1 because u> τ0.
Hence, the two sample paths couple at t = 1 and
letting π2 follow π1 after t = 1, we obtain
Vπ1ðx, TÞ� Vπ2ðx, TÞ ¼ 0, 8T ≥ 1: (ii) If the service
of the class 0 customer under π2 finishes at t = 1,
let π2 follow π1 starting from t = 1 except when π1
works (triages or serves directly) on the customer
being triaged at t = 0, then let policy π2 stay idle.
Hence, Vπ1ðx, TÞ� Vπ2ðx, TÞ≥ 0, 8T ≥ 1, which con-
cludes the proof.

Based on Lemma 1, we exclude policies that take
the action of triage when u> τ0:

Proof of Theorem 3. (i)&(ii). We first show that (i)
and (ii) are optimal for the T-period problem in (A2)
using stochastic coupling and induction on T. For
T = 1, the results are true since Vπðx, 1Þ ¼
E γ∑2

i¼0 rix
h i

does not depend on π. Now assume the

results hold for some T ≥ 1. Using stochastic cou-
pling we will show that it also holds for T + 1. We

first show that S1 is better than every other possible
action one by one.
(i)-1: Serving a class 1 is better than serving a

class 2. Define policy π1 that serves a class 2 cus-
tomer (assume there is one) at t = 0 while there is a
class 1 customer and then follows the optimal policy
at t = 1. Then, π1 must serve a class 1 at t = 1 by the
induction assumption. Consider now the policy π2
that switches the order of the first two actions under
π1 and then follows π1 starting at t = 2. The differ-
ence between the expected cost for the two policies
is

Vπ1ðx, Tþ1Þ�Vπ2ðx, Tþ1Þ¼ τ�1
2 γ2r1þð1� τ�1

2 Þ

γ2ðr1þ r2Þ� τ�1
1 γ2r2þð1� τ�1

1 Þγ2ðr1þ r2Þ
� 	

¼ γ2ðr1=τ1� r2=τ2Þ≥ 0:

Hence, serving a class 1 customer is better than
serving a class 2 customer.
(i)-2: Serving a class 1 is better than serving a

class 0. The proof is similar to Case (i)-1 thus omit-
ted.
(i)-3: Serving a class 1 is better than triaging a

class 0. Define policy π1 that triages a class 0 cus-
tomer (assume there is one) at t = 0 while there is a
class 1 customer and then follows the optimal policy
at t = 1. Then, π1 must serve a class 1 at t = 1 by the
induction assumption. Consider now the policy π2
that switches the order of the first two actions under
π1 and then follows π1 starting at t = 2. The differ-
ence between the expected cost for the two policies
is

Vπ1ðx, Tþ1Þ�Vπ2ðx, Tþ1Þ¼ ðr0þ r1Þγ2�
τ�1
1 γ2r0þð1� τ�1

1 Þγ2ðr0þ r1Þ
� 	¼ γ2r1τ

�1
1 >0:

Hence, serving a class 1 is better than triaging a
class 0 customer.
We have proved that a�ðxÞ ¼ S1 if x1 ≥ 1, hence

we only need to consider the case when
x1 ¼ 0, x0 > 0, and x2 > 0 for Theorem 3 (ii). Define
policy π1 that serves a class 2 customer at t = 0 and
then follows the optimal policy at t = 1. Then, by
the induction assumption, π1 must work on a class
0, either by serving directly (S0) or performing
triage (Tr) at t = 1. Consider policy π2 that directly
serves a class 0 at t = 0, serves a class 2 at t = 1,
and then goes on to follow the optimal policy start-
ing at t = 2.
If π1 takes action S0 at t = 1, then the difference

between the expected cost for the two policies is
Vπ1ðx, Tþ1Þ�Vπ2ðx, Tþ1Þ ¼ γ2ðr0=τ0� r2=τ2Þ≥ 0: If
π1 takes action Tr at t = 1, then by Lemma 1 we
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must have u≤ τ0: Next, we write down the costs
under policies π1 and π2 as follows.

Vπ1ðx, Tþ1Þ
¼ γxrþ γ2xrþ γ2λr0� γ2r2τ�1

2 þ γ2τ�1
2 ½u�1

q1Vðx� e1þ e2� e3, T�1Þþ q2Vðx� e1, T�1Þ� 	
þλVðxþ e1� e3, T�1Þþð1� λ�u�1ÞVðx� e3, T�1Þ�
þγ2λ½u�1½q1Vðxþ e2, T�1Þþq2Vðxþ e3, T�1Þ�
þλVðxþ2e1, T�1Þþð1� λ�u�1ÞVðxþ e1, T�1Þ�
þγ2ð1� λ� τ�1

2 Þ½u�1½q1Vðx� e1þ e2, T�1Þ
þq2Vðx� e1þ e3, T�1Þ�þ λVðxþ e1, T�1Þ
þð1� λ�u�1ÞVðx, T�1Þ�, (A6)

Vπ2ðx, Tþ1Þ¼ γxrþ γ2xrþ γ2λr0� γ2r0τ�1
0

þγ2τ�1
2 τ�1

0 Vðx� e1� e3, T�1Þ�
þλVðxþ e1� e3, T�1Þ
þð1� λ� τ�1

0 ÞVðx� e3, T�1Þ�
þγ2λ τ�1

0 Vðx, T�1Þþ λVðxþ2e1, T�1Þ�
þð1� λ� τ�1

0 ÞVðxþ e1, T�1Þ�
þγ2ð1� λ� τ�1

2 Þ τ�1
0 Vðx� e1, T�1Þ�

þλVðxþ e1, T�1Þ
þð1� λ� τ�1

0 ÞVðx, T�1Þ�,
(A7)

where V(x, t) is the total discounted cost in the next
t periods starting from state x under the optimal
policy. It is easy to use a sample-path argument to
show that Vðxþ ei, tÞ≥Vðx, tÞ, 8x∈S, i ¼ 1, 2, 3,
and t ≥ 0. Hence, from (A6) and (A7) and the fact
that u ≤ τ0, we get Vπ1ðx, Tþ1Þ�Vπ2ðx, Tþ1Þ>
γ2ðr0=τ0� r2=τ2Þ≥ 0: Since the results hold for all
T < ∞, they also hold for the infinite-horizon prob-
lem with the total discounted cost, which concludes
our proof.

We need the following lemma to prove Theorem 3
(iii).

LEMMA 2. Assume r1=τ1 ≥ r0=τ0 ≥ r2=τ2: For
x ¼ ð0, 0, x2Þ, we have (i) vðxþ e2Þ�vðxÞ≥
ðr1þx2r2Þτ1=ð1þατ1Þ; and (ii) vðxþ e3Þ�vðxÞ≥
ðr2þx2r2Þτ2=ð1þατ2Þ, where v(x) is the minimum total
discounted cost starting in state x.

Proof. By Theorem 3 (i), the optimal action at state
xþ e2 is to serve class 1. Hence,

vðxþ e2Þ�vðxÞ ¼ λvðxþ e1þ e2Þþ τ�1
1 vðxÞ

þðu�1þ τ�1
0 þ τ�1

2 Þvðxþ e2Þþ r1þx2r2

�vðxÞ>ð1�α� τ�1
1 Þðvðxþ e2Þ

�ðxÞÞþ r1þx2r2,

which yields vðxþ e2Þ�vðxÞ> ðr1þx2r2Þτ1=ð1þατ1Þ.
Similarly, we have

vðxþ e3Þ�vðxÞ ¼ λvðxþ e1þ e3Þþ τ�1
2 vðxÞ

þðu�1þ τ�1
0 þ τ�1

1 Þvðxþ e3Þþ r2þ
x2r2�vðxÞ >ð1�α� τ�1

2 Þðvðxþ e3Þ�vðxÞÞþ r2þx2r2,

which yields vðxþ e3Þ�vðxÞ> ðr2þx2r2Þτ2=ð1þατ2Þ.

Proof of Theorem 3. (iii). We prove the result by a
sample-path argument for the uniformized discrete-
time process. By Lemma 1, we only need to consider
cases with u ≤ τ0: For initial system state
x ¼ ð1, 0, x2Þ, x2 ≥ 0, consider policy π1 that triages
the single class 0 customer at t = 0 and follows the
optimal policy starting from t = 1, and policy π2 that
serves the single class 0 customer at t = 0 and fol-
lows the optimal policy starting from t = 1. There
are three possible scenarios:

1. With probability τ�1
0 , the service of the class 0

customer under π2 finishes by t = 1, then in
the corresponding sample path, the triage
under π1 must be also complete by t = 1 (be-
cause u≤ τ0). Hence,

Vπ1ðxÞ�Vπ2ðxÞ¼ q1ðvðx� e1þ e2Þ�vðx� e1ÞÞ
þq2ðvðx� e1þ e3Þ�vðx� e1ÞÞ
≥ q1ðr1þx2r2Þτ1=ð1þατ1Þ
þq2ðr2þx2r2Þτ2=ð1þατ2Þ,

where the inequality follows from Lemma 2.
2. With probability u�1� τ�1

0 , the service of the class
0 customer under π2 is not complete by t = 1 and
hence the state is still x, however, the triage
under π1 is complete by t = 1. Hence, we have

Vπ1ðxÞ�Vπ2ðxÞ¼Vπ1ðxÞ�ðr0þx2r2þ γvðxÞÞ
≥Vπ1ðxÞ�vðxÞ�ðr0þx2r2Þ>
�ðr0þx2r2Þu,

where the first inequality holds because γ ≤ 1
and the last one holds because Vπ1ðxÞ ≥ vðxÞ
and u > 1.

3. With probability 1�u�1, the triage under π1 is
not complete by t = 1, nor is the service of the
class 0 customer under π2 (because u≤ τ0). The
event that happened in t = 1 could be a dummy
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transition due to the uniformization or a new
arrival, and thus, in either case, the two sample
paths under π1 and π2 have the same states
starting from t = 1 and accumulated the same
cost in the previous period. Hence, Vπ1ðxÞ�
Vπ2ðxÞ ¼ 0:

Taking the expectation over these three possible
outcomes at t = 0, we have

Vπ1ðxÞ�Vπ2ðxÞ>τ�1
0 ½q1ðr1þx2r2Þτ1=ð1þατ1Þ

þq2ðr2þx2r2Þτ2=ð1þατ2Þ�� ðu�1� τ�1
0 Þðr0þx2r2Þu

¼ τ�1
0 q1r1τ1=ð1þατ1Þþq2r2τ2=ð1þατ2Þþ r0
�

u� r0τ0�þ τ�1
0 x2r2 q1τ1=ð1þατ1Þþq2τ2=

�
ð1þατ2Þþu� τ0�≥ 0,

where the last inequality holds by the conditions
given in the theorem.

To prove Theorem 3 (iv), we need Lemma 3, which
is proved in the E-companion, but first let  be the set
of functions defined on S such that if v∈ , then fol-
lowing hold:

f1. q1u
�1½τ�1

1 ðvðxþ e2Þ�vðxÞÞ� τ�1
0

ðvðxþ e2Þ�vðx� e1þ e2ÞÞ�≤ r0τ�1
0 , x0 ≥ 1,

x1 ¼ 0, x2 ≥ 0:

f2. GðxÞ ≥ 0, x0 ≥ 1, x1 ¼ 0, x2 ≥ 0, where

GðxÞ≡ u�1½q1vðx� e1þ e2Þþq2vðx� e1þ e3Þ�
þτ�1

0 vðxÞ�u�1vðxÞ� τ�1
0 vðx� e1Þ: (A8)

LEMMA 3. Suppose that r1
τ1
≥ r0

τ0
≥ r2

τ2
, q1r1τ1= ð1þατ1Þþ

q2r2τ2=ð1þατ2Þþ r0u≥ r0τ0, q1τ1=ð1þατ1Þþq2τ2=ð1þ
ατ2Þþ u≥ τ0, and u≥ ~uðαÞ. (i) If v∈ , then Lv∈ : (ii)
There exists an optimal stationary policy with a value
function that possesses the properties of functions from
set .

Proof of Theorem 1. (iii). Lemma 3 proved that
there exist an optimal stationary policy and the
corresponding (optimal) value function that satis-
fies property (f2) when u ≥ ~uðαÞ. Property (f2)
implies that it is better to directly serve a class 0

customer than to triage it at any system state
when u ≥ ~uðαÞ, hence the result.

To prove Theorem 3 (v), we need Lemma 4, which
is proved in the E-companion, but first let  be the set
of functions defined on S such that if vð�Þ∈, then
following hold when τ0 ¼ τ1 ¼ τ2 ¼ τ:

h1. GðxÞ≤Gðxþ e3Þ, x0 ≥ 1, x1 ¼ 0, x2 ≥ 0:

h2. vðxþ e1Þ�vðxþ e2Þ≤ vðxþ e1þ e3Þ�
vðxþ e2þ e3Þ, x0 ≥ 0, x1 ¼ 0, x2 ≥ 0:

h3. vðxþ e3Þ�vðxÞ≤ vðxþ2e3Þ�vðxþ e3Þ, x0 ≥ 0,
x1 ¼ 0, x2 ≥ 0:

h4. vðxþ e3Þ�vðxÞ≥ vðx� e1þ2e3Þ�vðx� e1þ e3Þ,
x0 ≥ 1, x1 ¼ 0, x2 ≥ 0:

h5. GðxÞ≥Gðxþ e1Þ, x0 ≥ 1, x1 ¼ 0, x2 ≥ 0:

h6. vðxþ e1Þ�vðxþ e2Þ≥ vðxþ2e1Þ
�vðxþ e1þ e2Þ, x0 ≥ 0, x1 ¼ 0, x2 ≥ 0:

h7. q1½vðxþ e2Þ�vðxþ e1Þ�≥ ~uðαÞr0, x0 ≥ 0, x1 ¼ 0,
x2 ≥ 0:

h8. GðxÞ� τ�1½vðx� e1Þ�vðx� e1� e3Þ�≤ ~uðαÞu�1

r0, x0 ≥ 1, x1 ¼ 0, x2 ≥ 1:
h9. ½vðxþ2e3Þ�vðxþ e3Þ�� ½vðxþ e3Þ�vðxÞ�≤

ðq2u�1� τ�1Þτ2ðr0� r2Þ, 8x∈S:
h10. Gðx0, 0, 0Þ≤ r0, x0 ≥ 1:

h11. For any x∈S, vðxþ e3Þ�vðxÞ≤ r2α�1

1�βx1þx2þ1
1 βx02


 �
, where

β2 ≡ ð1þuτ�1Þβ1�uτ�1: (A10)

LEMMA 4. Suppose that (A5) holds, r1 ≥ r0 ≥ r2, τ0 ¼ τ1
¼ τ2 ¼ τ, ατ2=ð1þατÞ< u< ~uðαÞ, and 0< α< u�1� λ.
(i) If v∈, then Lv∈. (ii) There exists an optimal sta-
tionary policy with a value function that possesses the
properties of functions from set .

Proof of Theorem 3. (v). Lemma 4 proved that
there exist an optimal stationary policy and the corre-
sponding (optimal) value function that satisfies prop-
erties (h1) and (h5) when r1 ≥ r0 ≥ r2, τ0 ¼ τ1 ¼
τ2 ¼ τ, ατ2=ð1þατÞ< u< ~uðαÞ, and 0< α< u�1� λ.
Properties (h1) and (h5) imply that the optimal policy
on whether to triage or not is determined by a thresh-
old x�2ðx0Þ for any given x0, which is a non-decreasing
function of x0: To be more specific, if it is optimal to
skip triage in ðx0, 0, x2Þ for x0 ≥ 1 and x2 ≥ 0, then it
is optimal to do so in ðx00, 0, x02Þ for 1 ≤ x00 ≤ x0 and
x02 ≥ x2: This completes the proof of Theorem 3 (v).

β1 ≡
λð1þuτ�1Þþ τ�1þα�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½λð1þuτ�1Þþ τ�1þα�2�4λð1þuτ�1Þτ�1

q
2λð1þuτ�1Þ , (A9)
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Appendix

B. Proofs of Proposition 1 and Theorem 1

We first show that the three SEN conditions given in
Section 7.2 of Sennott (1999) hold. Let z be some state
in S, Vπ

γ ðzÞ be the total discounted cost under policy π
starting from z, and VγðzÞ be the optimal total dis-
counted cost. The SEN conditions are as follows:

SEN1. The quantity ð1� γÞVγðzÞ is bounded for
γ ∈ (0, 1).

SEN2. There exists a nonnegative (finite) function
M(�) such that hγðxÞ≡VγðxÞ�VγðzÞ≤MðxÞ
for x∈S and γ ∈ (0, 1).

SEN3. There exists a nonnegative (finite) constant K
such that �K ≤ hγðxÞ for x∈S and γ ∈ (0, 1).

Note that after uniformization, the discounting fac-
tor for the equivalent discrete-time MDP is γ = 1−α;
see Figure 11.5.3 in Puterman (2005). Hence, letting
α→0 is equivalent to letting γ→1.

LEMMA 5. Assume that λτ0 < 1. The three SEN condi-
tions are satisfied for the infinite horizon total discounted
cost problem in (A1).

Proof. We first verify SEN 1. Let z = 0 be the initial
system state and π be the policy that serves all class 0
customers directly without triage. Hence, this is an
M/M/1 queue with arrival rate λ and service rate τ�1

0

starting at the empty and idle state. Thus, we have

Vπ
γ ð0Þ¼E

hZ ∞

0

e�ð1�γÞtr0QðtÞdt



Qð0Þ¼ 0

i

¼ r0

Z ∞

0

e�ð1�γÞtE½QðtÞjQð0Þ¼ 0�dt≤ r0λτ0
ð1� γÞð1� λτ0Þ ,

where Q(t) is the number of customers in the M/M/1
queue at time t. The above inequality follows from
Corollary 3.1.1 of Abate and Whitt (1987) that E[Q(t)|
Q(0) = 0] is non-decreasing in t and bounded
by lim t!∞E½QðtÞjQð0Þ ¼ 0� ¼ λτ0=ð1� λτ0Þ where

λτ0 < 1. Hence, ð1� γÞVγð0Þ≤ ð1� γÞVπ
γ ð0Þ≤ r0λτ0

1�λτ0
<

∞, 8γ ∈ ð0, 1Þ, i.e., SEN1 holds. To prove SEN 2, we
need to find an upper bound on hγðxÞ ¼ VγðxÞ�Vγð0Þ
for all x ¼ ðx0, x1, x2Þ∈S: Let M(0) = 0 and for
x∈S nf0g define π0 as a policy that serves customers
in FCFS manner with no triage until the state reaches
0, after which it follows the optimal policy. Let T0ðxÞ
be the first passage time to state 0 starting from state
x and N0ðtÞ be the total number of customers served

during ½0, T0ðxÞ� under π0. Then, hγðxÞ≤Vπ0
γ ðxÞ�Vγð0Þ

≤maxfr0, r1, r2gE½T0ðxÞN0ðxÞ�. Since λτ0 < 1, it can
be shown that MðxÞ≡ E½T0ðxÞN0ðxÞ� ≥ 0 is a finite
function of x, which completes the verification of

SEN2. We finally prove SEN3 by a simple sample-
path argument. Consider two systems. System 1 and
System 2 are identical except that System 1 starts in
state x and uses the optimal policy and System 2

starts in state 0 and uses policy π
~
, which takes what-

ever action System 1 takes if possible; otherwise, it

idles. Then, we have hγðxÞ≥VγðxÞ�V~π
γ ð0Þ≥ 0, which

completes the proof.

Proofs of Proposition 1 and Theorem 1 . By Lemma 5,
Theorem 7.2.3 (ii) in Sennott (1999) implies that there
exists an optimal stationary policy with optimal bias
function h(�) and constant average cost g� satisfying
the inequalities in (5). Hence, Proposition 1 holds.
Letting α→0 (equivalently γ→1) in the proof of Theo-
rem 3 (i), (ii), and (iii) proves the results for parts (i),
(ii), and partially for (iii). Furthermore, Theorem 7.2.3
(ii) in Sennott (1999) implies that h(x) is a limit func-
tion of the sequence hαnðxÞ≡VαnðxÞ�VαnðzÞ, i.e.,
limn!∞hαnðxÞ ¼ hðxÞ, 8x∈S, where 0< αn < u�1� λ,
z is some state in S, and αn# 0 as n→∞. Hence, hαnðxÞ
inherits all the properties of the optimal value func-
tion of the discounted-cost problem, and so does h
(x). To be more specific, hðxÞ∈  if u≥ ~uð0Þ, and
hðxÞ∈ if u< ~uð0Þ and condition (7) holds, where
the right-hand sides of (h7), (h8), and (h11) hold
for α↓0, i.e.,

1. q1½vðxþ e2Þ�vðxþ e1Þ� ≥ ~uð0Þr0, x0 ≥ 0, x1 ¼ 0,
x2 ≥ 0;

2. GðxÞ� τ�1½vðx� e1Þ �vðx� e1� e3Þ�≤ ~uð0Þu�1r0,
x0 ≥ 1, x1 ¼ 0, x2 ≥ 1;

3. vðxþ e3Þ�vðxÞ≤ r2
1�λðτþuÞ ½τðx0þx1þx2þ1Þþ

ux0�, x ∈S:

Hence, as in the proof of Theorem 3 (v), see last
paragraph of Appendix A, we conclude that the
optimal stationary policy has the structural proper-
ties described in Theorem 3 (iv)&(v). Hence, Theo-
rem 1 holds.

Appendix

C. Proofs of Propositions 2 and 3,
Theorem 2, and Corollary 1

Let Π0 denote the set of deterministic policies under
which all class 0 customers are triaged (not necessar-
ily upon arrival). Our next result describes the best
policy in Π0, which will be used to prove Proposition
2. To simplify the presentation of the proofs, let
ρ0 ≡ λðuþq1τ1Þ.
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LEMMA 6. Assume that r1
τ1
≥ r2

τ2
and ρ < 1. The following

policy minimizes the expected long-run average cost
within Π0: (i) Class 1 customers have the highest priority.
(ii) When there are no class 1 customers, triaging a class
0 customer is preferable over serving a class 2 if
r0τ2 > r2ðuþ q1τ1þq2τ2Þ, and serving a class 2 customer
is preferable over triaging a class 0 otherwise.
Proof. When every class 0 customer is required to
be triaged and triage/services are preemptive, our
problem becomes a special case of the scheduling
problem described in Corollary 3 in Lai and Ying
(1988), with transition matrix P, arrival rate and ser-
vice time vectors defined as follows:

P¼
0 q1 q2
0 0 0

0 0 0

0
B@

1
CA, λ¼ðλ, 0, 0Þ, and μ¼ðu, τ1, τ2Þ:

It is easy to verify that the eigenvalues of P are all 0,
and λðI�PÞ�1μ0 ¼ λðuþ q1τ1þq2τ2Þ ¼ ρ< 1: Let ϕi be
Klimov’s index for class i ∈ {0, 1, 2}. By the proce-
dures in Klimov (1974), we get ϕ0 ¼ r0=ðuþq1τ1þ
q2τ2Þ, ϕ1 ¼ r1=τ1, and ϕ2 ¼ r2=τ2: Corollary 3 states
that it is optimal to serve customers according to a
non-increasing order of Klimov’s priority indices. By
the assumptions, we have ϕ1 > ϕ0 and ϕ1 > ϕ2,
which proves (i). Conditions in part (ii) are equiva-
lent to the order of ϕ0 and ϕ2:

Proof of Proposition 2. From Lemma 6, we know
that the optimal policy within Π0 is TP1 when r0τ2 >
r2ðuþq1τ1þ q2τ2Þ. If r0τ2 ≤ r2ðuþq1τ1þq2τ2Þ, then a
policy that triages every class 0 customer and serves
the customer immediately after triage is optimal. We
call it policy TS. The stochastic system under policy
TS is an M/G/1 queue with a phase-type distributed
service time whose first and second moments are
uþq1τ1þq2τ2 and 2½u2þq1τ1ðτ1þuÞþ q2τ2ðτ2þuÞ�,
respectively. Hence, the long-run average number of
customers in this queue, denoted by QTS, is given by

QTS ¼ λ2ðu2þq1τ1ðτ1þuÞþq2τ2ðτ2þuÞÞ=ð1�ρÞ,
(A11)

and the long-run average cost is cTS ¼ QTSr0þ λður0þ
q1r1τ1þq2r2τ2Þ: Hence,

cTS� cNT ¼

λ2r0
u2þq1τ1ðτ1þuÞþq2τ2ðτ2þuÞ

1�ρ
� τ20
1� λτ0

� �

þλðr0uþq1r1τ1þq2r2τ2� r0τ0Þ≥ 0, (A12)

where the inequality holds because of u2þq1τ1ðτ1þ
uÞþ q2τ2ðτ2þuÞ≥ τ20, uþq1τ1þq2τ2 ≥ τ0, and r0uþ
q1r1τ1þq2r2τ2 ≥ r0τ0. Hence, within the set of all

deterministic state-independent policies, it is suffi-
cient to consider only TP1 and NT.

Proof of Proposition 3. The stochastic system
under TP1 contains two queues in steady state: we
call the queue where a class 0 customer waits for
triage (and service if it is classified as class 1) Queue
0, and call the queue where a class 2 customer waits
for service after it is triaged Queue 2. Let Q0 denote
the long-run average number of customers waiting
in Queue 0 and L2 denote the long-run average
number of class 2 customers in the system (includ-
ing those in Queue 2 and in service). Since the ser-
ver gives preemptive priority to triaging class 0
customers and serving class 1 customers over serv-
ing class 2 customers, to obtain Q0, we can use the
steady-state number in the queue formula for an
M/G/1 queue with a phase-type service time distri-
bution having a mean of uþq1τ1 and a second
moment of 2ðu2þq1uτ1þq1τ

2
1Þ, see, e.g., Theorem 7.12

in Kulkarni (2010). Hence, Q0 ¼ λ2ðu2þq1uτ1þ
q1τ

2
1Þ=ð1�ρ0Þ, and the expected remaining service

time of the customer in service observed at a ran-
dom time in steady state, denoted by EðR0Þ, can be
obtained as EðR0Þ ¼ λðu2þq1uτ1þq1τ

2
1Þ, see, e.g.,

Problem 5.7 in Gross et al. (2008). Note that both
TP1 and TS are work-conserving policies, that is, no
service needs are created or destroyed within the
system under each of the two policies. Then, by the
invariance of expected long-run average workload
of work-conserving policies, see, for example, Theo-
rem 1 in Chapter 10 of Wolff (1989), we have

EðR0ÞþQ0ðuþq1τ1þq2τ2ÞþL2τ2 ¼
EðRTSÞþQTSðuþ q1τ1þq2τ2Þ, (A13)

where QTS is given by (A11), and the expected
remaining service time of the customer in service,
denoted by EðRTSÞ, is given by EðRTSÞ ¼ λðu2þ
q1τ1ðτ1þuÞþq2τ2ðτ2þuÞÞ: Hence, we have

L2 ¼ λq2 uþ τ2þρ½uþ τ2� λuτ2� λq1τ1ðτ2� τ1Þ�
ð1�ρÞð1�ρ0Þ

� �
:

(A14)

With the expressions Q0 and L2, we have cTP1 ¼
Q0r0þ λður0þ q1τ1r1ÞþL2r2:

Proof of Theorem 2. Let f1ðλÞ≡ ðcNT� cTP1Þð1� λτ0Þ
ð1�ρÞð1�ρ0Þ=λ: We prove part (i) by showing that
f1ðλÞ ¼ 0 has at most two solutions in ð0, ðuþ q1τ1þ
q2τ2Þ�1Þ, lim λ!0 f1ðλÞ< 0, and limλ!ðuþq1τ1þq2τ2Þ�1

f1ðλÞ≤ 0: We first plug into f1ðλÞ the expressions of
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cNT and cTP1 in (8) and (9), respectively; then we

rewrite f1ðλÞ as f1ðλÞ ¼ A3λ
3þA2λ

2þA1λþA0, where

A3 ¼ uτ0ðuþq1τ1þq2τ2Þ½q2r2uþ q1τ1ðq2r2þ r1Þ�>0,

A0 ¼�½r0uþq1r1τ1þq2r2τ2� r0τ0��q2r2u<0:

Hence, f1ðλÞ is a cubic function of λ, and thus is
continuous over ð0, ðuþq1τ1þq2τ2Þ�1Þ: Furthermore,
the derivative of f1ðλÞ is f 01ðλÞ ¼ 3A3λ

2þ2A2λþA1,
and hence, f1ðλÞ can have at most two stationary
points. Since limλ!0 f1ðλÞ ¼ A0 < 0, and
we conclude that f1ðλÞ ¼ 0 can have at most two solu-
tions in ð0, ðuþq1τ1þq2τ2Þ�1Þ, which completes the
proof of part (i).

To prove part (ii), we rewrite f1ðλÞ as a function
of p1, denote it by f2ðp1Þ, and obtain f2ðp1Þ≡
B3p

3
1þ B2p

2
1þB1p1þB0 ¼ f1ðλÞ, where

B3 ¼ λ2τ1ðτ1� τ2Þðθ1þθ2�1Þ2
½ðh1�h2Þðτ0�θ2uð1� λτ0ÞÞþðθ1þθ2�1Þ
h1uð1� λτ0Þ�:

The derivative of f2ðp1Þ is f 02ðp1Þ ¼ 3B3p21þ2B2p1þ
B1. Hence, f2ðp1Þ can have at most two stationary
points. We only need to show limp1!1 f2ðp1Þ< 0 and
limp1!0 f2ðp1Þ< 0, which are equivalent to cNT < cTP1
when p1 ! 1 and p1 ! 0, respectively.

lim
p1!1

ðcTP1� cNTÞ ¼ lim
p1!1

ðcTP1� cTSþ cTS� cNTÞ

≥ lim
p1!1

ðcTP1� cTSÞ ¼ lim
p1!1

½ðuþq1τ1þq2τ2� τ2Þτ�1
2

ðQTS�Q0Þþ λq2u�h1>0,

where the first inequality holds because of (A12),
the last inequality holds because uþq1τ1þq2τ2 ≥ τ0,
τ2 ¼ τ0, and

QTS�Q0 ¼
λ2½u2þq1τ1ðτ1þuÞþq2τ2ðτ2þuÞ�

1� λðuþq1τ1þq2τ2Þ

�λ2½u2þ q1τ1ðτ1þuÞ�
1� λðuþq1τ1Þ

>0:

The proof for p1 ! 0 is similar thus omitted, which
completes the proof of part (ii).
To prove part (iii), we write f1ðλÞ as f1ðλÞ ¼ q1r1

ð1�ρÞ½λq2τ0τ1�ð1�λτ1þλ2τ0τ1Þuþðτ0� τ1Þ��q2r2 f3ðuÞ,
where

f3ðuÞ ≡ ð1� λτ0Þ½τ2þð1� λτ2Þu� λq1τ1ðτ2� τ1Þ�
�ð1�ρÞð1�ρ0Þ½τ0�ð1� λτ0Þu�

≥ ð1�ρÞ τ2þð1� λτ2Þu� λq1τ1ðτ2� τ1Þ
�

�ð1�ρ0Þ½τ0�ð1� λτ0Þu�g
¼ ð1�ρÞ ð1� λτ0Þu½2� λðuþq1τ1Þ�

�
þλðuτ0þ q1τ

2
1Þg,

where the first inequality holds because
uþq1τ2þq2τ2 ≥ τ0 and ρ < 1, and the last equality
holds because τ0 ¼ τ2: Hence, f3ðuÞ> 0 for all u > 0
such that ρ < 1. This means that cNT ≤ cTP1 if and
only if

r2=τ2
r1=τ1

≥ q1τ1ðq2τ2Þ�1ð1�ρÞ½λq2τ0τ1
�ð1� λτ1þ λ2τ0τ1Þuþðτ0� τ1Þ�= f3ðuÞ,

which is equivalent to r2=τ2
r1=τ1

≥Θ1 since r2=τ2
r1=τ1

> 0:

Proof of Corollary 1. We start by showing that
Θ2 ≤ 1: First, consider the case where u ≥ τ0�q1τ1:
In this case, it is easy to see that Θ2 ¼ 0: Otherwise,
when u< τ0�q1τ1, we have

Θ2�1¼�q1τ1ðuþq1τ1þq2τ2� τ0Þ�q2τ2u

q2τ2ðq1τ1þuÞ <0,

where the inequality holds because uþ q1τ1þ
q2τ2 ≥ τ0 and u > 0. Now, part (i) follows from The-
orem 1 (iv), whereas parts (ii) and (iii) follow from
Theorem 2 (iii). Note that Θ2 ≥ Θ1 holds, otherwise,

there exists a r2=τ2
r1=τ1

such that Θ2 <
r2=τ2
r1=τ1

<Θ1, i.e., TP1

is the best static deterministic state-independent
policy (see the proof of Theorem 2 (iii) where
cNT > cTP1), which contradicts with the fact that NT
is the optimal policy by Theorem 1.

Supporting Information
Additional supporting information may be found online
in the Supporting Information section at the end of the
article.

Appendix S1: E-Companion to the Paper “When to
Triage in Service Systems with Hidden Customer Class
Identities?”

lim
λ!ðuþq1τ1þq2τ2Þ�1

f1ðλÞ¼�q2r2ðuþq1τ1þq2τ2� τ0Þ½u2þq1τ1ðuþ τ1Þþq2τ2ðuþ τ2Þ�
ðuþq1τ1þq2τ2Þ2

≤ 0,
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