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Appendix A: Proofs of Lemmas 1 and 2 and a Supplementary Result

Proof of Lemma 1: Consider the pooled system described in Section 2. If there are already customers in the

system, the expected time that an arriving customer spends in the system is . The reason is

as follows. The arriving customer enters the service after customers ahead of her are served. Then, because

there are servers, it follows from standard probability arguments that the total expected time to complete the service

of customers ahead of the arriving customer is . This gives the expected waiting time

of the arriving customer in the queue. In addition to this, the expected service time of the aforementioned customer

is . Combining the expected waiting time in the queue and the expected service time, the expected time that the

arriving customer spends in the system is . This and (2) imply that such an

arriving customer joins the system if and only if which is equivalent to .

This implies that the maximum number customers in the system is equal to where

probability distribution of the number of customers in the

system. Let be the steady-state probability that there are customers in the system. Because by (5), the

balance equations of this system are the following: for and for

. From these and the fact that , we have

(EC.1)

for and for (EC.2)

Using these, we get the following expressions for the long-run average number of customers in the system and the

throughput, respectively:

(EC.3)

(EC.4)

Because by Little’s law, (8) immediately follows from (EC.3) and (EC.4). Replacing (EC.3) and (EC.4)

in place of and , respectively, in the formula (3), we get (9).

Proof of Lemma 2: Recall that the dedicated system consists of separate sub-systems each with a line dedicated to

one server. Suppose that a customer arrives to one of these dedicated queues and observes that there are customers in

that sub-system. Then, the expected time the arriving customer spends in that sub-system is .

This means by (2) that a customer joins the dedicated queue if and only if which is equivalent

to . Note that the later inequality implies that the maximum number of customers in each separate

sub-system is where be considered as an M/M/1/k
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system. Then, the long-run average number of customers and the throughput in one of the dedicated sub-systems are

as follows, respectively (see Table 4 on page 149 of Sztrik (2012)).

if

if
(EC.5)

if

if
(EC.6)

By Little’s Law, . From this, (EC.5) and (EC.6), we get (EC.7) below. Similarly, by substituting and

respectively with (EC.5) and (EC.6) in the formula (3), we get (EC.8) below.

if

if
(EC.7)

if

if
(EC.8)

The fact that (EC.7) and (EC.8) are equivalent to and expressions in the lemma, respectively, completes the

proof.

We now state and prove a supplementary lemma which we will use in the remainder of the Appendix.

LEMMA EC.1. Consider an M/M/1/K queueing system (indexed by ) with the potential arrival rate and

the service rate and . Suppose that there is no service fee as in Section 2. Then, the

throughput is

if

if
(EC.9)

The long-run average number of customers in the system is

if

if
(EC.10)

The average sojourn time is

if

if
(EC.11)

The social welfare is

if

if
(EC.12)

Proof of Lemma EC.1: Because the ratio of the potential arrival rate to the service rate in the described system is

, which is same as in each dedicated sub-system (which consists of one dedicated queue and one server), the

balance equations for the described M/M/1/K system are the same as the ones for the M/M/1/k system analyzed in the
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proof of Lemma 2, with the exception that must be replaced with . Replacing with in , we get

where is the steady-state probability of having customers in the described M/M/1/K system. From this and the

fact that the throughput in M/M/1/K system is equal to , we complete the proof of part (a). Similarly,

replacing with in we get in part (b). Because the average sojourn time is by Little’s Law, part

(c) immediately follows. Finally, by replacing with , with and with in (from (EC.8)), we get

part (d).

Appendix B: Proof of Proposition 1

Recall that and . Let and denote the balking probabilities in the dedicated and pooled

systems, respectively. The proofs of Lemmas 1 and 2 imply that

and (EC.13)

where is the stationary probability that there are customers in one of the sub-systems in the dedicated one.

Based on these, observe that regardless of the value of , we have

(EC.14)

(EC.15)

(EC.16)

The equation (EC.14) is because . The inequality (EC.15) follows from the fact that

since . Because and

, and the balking probability in the dedicated system is strictly larger than the one in the pooled system

by (EC.16), we have .

Appendix C: Proof of Proposition 2

Part (a): Recall and from (EC.4) and (EC.9), respectively. Then,

(EC.17)

Part (b): Denote by the number of customers in the SQ system in the steady-state, and let be the corresponding

as the M/M/1/K system described in Lemma EC.1.

To show our claim, we will use the standard likelihood comparison technique. Let be the transition rate

from state to in the SQ system, be the transition rate from state to in the pooled system,

for any . Because for each , in the steady-state, we have

and
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Thus, we have

(EC.18)

Using (EC.18), we now show that . Note that (EC.18) implies that for

all , , which is equivalent to

(EC.19)

The summation on both sides of (EC.19) over from to gives

(EC.20)

Similarly, the summation on both sides of (EC.19) over from to results in

(EC.21)

Combining (EC.20) and (EC.21) and letting , we have

(EC.22)

Thus, for any , hence

(EC.23)

By (EC.23), (EC.17) and Little’s Law,

Part (c):

and

Because and , . This completes the proof of part (c).

Appendix D: Proof of Proposition 3

Recall Lemmas 1, 2 and EC.1. To prove Proposition 3, we shall d

where

(EC.24)

Part (a): This follows from Propositions 1 and 2-(a).

The outline of the remainder of our proof is as follows. First, we will state and prove Lemma EC.2 that shows the

existence of the constant c).

LEMMA EC.2. For , the constant exists and .
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Proof of Lemma EC.2: and

equivalent to and . Both and

are strictly decreasing when and because

and (EC.25)

(EC.26)

for and . In addition, we have

and (EC.27)

It follows from (EC.25) through (EC.27) that for . Suppose

for a contradiction that . Because and are strictly decreasing for and , and

, at the following inequalities must hold: and . Note

that

(EC.28)

which implies that . Observe also that

(EC.29)

But, for ,

which contradicts (EC.29). Thus, .

Part (b): Proposition 3-(b) follows from the explicit forms of and in the proofs of Lemmas 2 and EC.1, from the

fact that implies , and from Lemma EC.3, which will be proved below. We now state and

verify Lemma EC.3.

LEMMA EC.3. If and where (EC.24),

Proof of Lemma EC.3: is increasing in for

. Note that

Then,

(EC.30)

Let and observe from (EC.30) that and have opposite signs for .

Note that for any , and for and ,
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This immediately implies that for and . Based on this, for , we have

(EC.31)

(EC.32)

(EC.33)

We have (EC.31) because and as we showed earlier, is increasing in for .

The inequality (EC.32) holds because . We

already know from the proof of LemmaEC.2 that is strictly decreasing in if and

, and in (EC.24) and the fact that

for imply that

for (EC.34)

Combining this and (EC.33), it follows that if and ,

(EC.35)

This completes the proof of our claim.

Part (c): In this part, we will show that if and ,

(EC.36)

This completes the proof of social welfare claim in Proposition 3-(c) because implies .

Recall from (EC.8) that the social welfare in the dedicated system is

(EC.37)

Recall also from (EC.12) that

(EC.38)

From (EC.37) and (EC.38), it follows that if and only if
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Note that the left hand side of the above inequality is equivalent to

Rearranging this, we conclude that if and only if

First Term Second Term

(EC.39)

d above by if and

. Moreover, by Lemma EC.3, the second term in (EC.39) is bounded below by if

and . These two results imply that if and , we have (EC.39). From this, Proposition 3-(c) follows.

We now show our claim that if and .

Suppose that ality:

(EC.40)

(EC.41)

(EC.42)

(EC.43)

and in (5) and (7) that we also have . Then, the inequality

(EC.41) follows because and is decreasing in for . The inequality (EC.43) is because

for .

We already know from the proof of Lemma EC.2 that is strictly decreasing in for and

in (EC.24). Because and , we have the

following for :

which together with (EC.43) implies that

(EC.44)

This completes our arguments for the proof of our claim above

if and and hence completes our arguments for the proof of Proposition 3-(c).

Proof of the claim that when (12) in Remark 1-(a): Recall that and

. By Proposition 3-(a), we have

(EC.45)

From this and Proposition 3-(c), the claim immediately follows.
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Appendix E: The Statement and the Proof of Proposition EC.1

PROPOSITION EC.1. The dedicated system results in (i) strictly larger average sojourn time and (ii) strictly smaller

social welfare than the SQ system, i.e., and , respectively, if

and (EC.46)

where

(EC.47)

Proof of Proposition EC.1: proof.

LEMMA EC.4. For , the constant

Proof of Lemma EC.4:

and . The function is strictly decreasing when and

because

(EC.48)

for and . In addition, we have

(EC.49)

It follows from (EC.48) and (EC.49) that

Recall from (EC.7) that when , the average sojourn time in the dedicated system is

Recall from (EC.11) that when , the average sojourn time in the SQ system is

If and ,

(EC.50)

(EC.51)

(EC.52)
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which proves the claim in part (i).

We now explain why the inequalities in (EC.50) and (EC.52) hold. Note that is increasing in because

(EC.53)

(Here, (EC.53) follows from the fact that , which is because

and thus achieves the minimum, which is , at .) Then, (EC.50) follows from the

fact that and is increasing in , as shown above.

The reason for (EC.52) is as follows. We already know from the proof of Lemma EC.4 that is strictly

decreasing in for and in (EC.47). Because and ,

we have for and .

We now prove the claim in part (ii). Recall from (3) that

and

Since by Proposition 3-(a), part (i) implies part (ii).

Appendix F: Proof of Theorem 1

F.1. Proof of Theorem 1 - Part (a):

Part (a)-(i) follows from Propositions 2-(b) and Remark 1-(a). Part (a)-(ii) follows from Propositions 2-(c) and 3-(c).

F.2. Proof of Theorem 1 - Part (b):

then prove parts (i) and (ii) under the condition (14),

and then we will prove same claims under the condition (15).

Proof of Theorem 1-(b) under the condition (14): If which is equivalent to , then

and . This and (5) imply that and . Thus, under (14), there is no waiting line and a joining

customer immediately gets the service. As a result,

ial welfare from (3):

and

Based on this, because by Proposition 1, .
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Proof of Theorem 1-(b) under the condition (15):

(EC.54)

where

and (EC.55)

In light of this, the outline of the remainder of the proof is as follows. First, we will state and prove Lemma EC.5 that

shows the existence of the constant which will be used in the remainder of the proof. Then, we will show in Lemma

EC.6 that if and , we have . Finally, we will use this inequality to prove the claims in parts

(i) and (ii) for and . This and the fact that implies complete the proof of part (b).

LEMMA EC.5. For , the constant

Proof of Lemma EC.5:

and . Observe that is strictly decreasing for and

because

(EC.56)

In addition, by an application of L’Hopital’s Rule, we have

(EC.57)

From (EC.56) and (EC.57), the claim follows.

LEMMA EC.6. For and , the long-run average number of customers in the dedicated system, that is,

, and the long-run average number of customers in the pooled system satisfy the following inequality:

(EC.58)

Proof of Lemma EC.6: Recall and from (EC.3) and (EC.5). Then, we have

(EC.59)

Note that we have
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Thus, (EC.59) and are equivalent to

(EC.60)

(EC.61)

Equation (EC.60) holds because

(EC.62)
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The expression in (EC.61), which is equivalent to

(EC.63)

(EC.64)

(EC.65)

(EC.66)

The inequality (EC.66) completes the proof of Lemma EC.6. Below we will explain how we obtain each of the

inequalities above.

The inequality (EC.63) holds because for ,

and

The inequality (EC.64) follows from the fact that and we have the following for :

The inequality (EC.65) is because

The inequality (EC.66) is due to the fact that and for

and . Below we will prove these two inequalities. We already know from the proof of Lemma EC.5 that
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is strictly decreasing in for and in (EC.55).

Because and , we have the following for :

Then,

(EC.67)

This completes the proofs of the claims that and for

and .

We now use the result in Lemma EC.6 to prove Theorem 1-(b)-(i) under the condition (15). For and ,

(EC.68)

(EC.69)

(EC.70)

(EC.71)

The inequality (EC.68) follows from Little’s Law. The inequality (EC.69) holds because by Lemma EC.6.

Recall from Proposition 1 that regardless of the value of . This implies the inequality (EC.70). The

and (EC.71) complete the proof of Theorem 1-(b)-(i) under the condition (15).

We now show Theorem 1-(b)-(ii) under the condition (15). Recall that

and

Because by Proposition 1 and by part (b)-(i), we have . This completes the proof

of Theorem 1-(b)-(ii) under the condition (15).

Appendix G: Statement and Proof of Lemma EC.7

LEMMA EC.7. . (a) As , and satisfy the following relations:

(EC.72)

(EC.73)

(b) As , and satisfy the following relations:

(EC.74)

if , and for ,

(EC.75)

where is a linear function of and does not depend on other parameters.

(c) As , and satisfy the following relations:

and (EC.76)
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, the limits , and are equivalent to , and , respectively.

In this proof, we will use these equivalent limits.

and and we will use those expressions to prove parts (a) through (c) of Proposition

EC.7. Recall from (EC.7) that the average sojourn time in the dedicated system is

(EC.77)

Thus, we have

(EC.78)

Recall (8). When ,

(EC.79)

and when ,

(EC.80)

(EC.81)

(EC.82)

The equation (EC.81) is due to the fact that

Based on (EC.79) and (EC.82),

(EC.83)

for , and when , we have

(EC.84)

Proof of Part (a): From (EC.77), we have
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(EC.85)

because the leading term in the above numerator is and the leading term in the above denominator is as

.

From (EC.79), when ,

(EC.86)

From (EC.82), it follows that for ,

(EC.87)

Combining (EC.85) (EC.86) and , we get the relation in (EC.72).

To prove (EC.73), recall (EC.78), (EC.83) and (EC.84). Then,

Furthermore, when ,

and for ,

This completes the proof of (EC.73).

Proof of Part (b): Note from (EC.77) that can also be expressed as the following:

(EC.88)
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Then, we have

(EC.89)

In addition, observe from (EC.82) that when ,

(EC.90)

The equation (EC.90) also holds when since when .

and from (5) and (7), we have

(EC.91)

We already know from (EC.89) that . This and (EC.91) imply that

Therefore, if , .

We now show (EC.75). Suppose that . Then, and . Recall (EC.88). Then,

(EC.92)
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:

(EC.93)

(EC.94)

The inequality (EC.93) is because for and . Note that the condition

in the statement of part (b) is equivalent to . Then, because , implies .

Using this and (EC.94), we have

(EC.95)

(EC.96)
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(EC.97)

(EC.98)

(EC.99)

The inequality (EC.95) is because , , and . The inequality (EC.96) holds because

and as . The inequality (EC.97) follows from the

fact that and because for and . The inequality (EC.99) follows

from the fact that . Thus, for . Based on the inequalities above we now

show (EC.75). Using (EC.92) and (EC.98), we have

(EC.100)

where . This completes the proof of our claim in (EC.75).

Proof of Part (c): Recall (EC.77), (EC.78), (EC.79), (EC.82), (EC.83) and (EC.84). Then, we have

If , we get

otherwise, that is, if , . In addition, for ,

and

and for ,

and

(EC.101)

(EC.102)

This completes the proof of part (c).
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Appendix H: Proof of Theorem 2

Recall Remark 2. In this section, we will prove a generalized version of Theorem 2, i.e., Theorem EC.1, which is valid

both when is an integer and when ovide its proof.

Theorem 2 is an immediate corollary of Theorem EC.1.

To state Theorem EC.1, we shall introduce new notation. Let be the minimum system size that makes

an integer:

(EC.103)

For instance, in Figure 3, . Because of this, we observe a repeating pattern (in which percentages increase with

considers every th h . . .

subsequence . . . such that

(EC.104)

For example, in Figure 3, the system size subsequence . . . includes the third system size ( ) in

each repeating pattern that consists of 5 data points ( ).

THEOREM EC.1. Let . . . . Then, we have the following results:

(a) There exists a constant such that the subsequence is non-

negative and strictly increasing in the system size if and . The constant , and does

not depend on either or .

(b) There exists a constant such that the subsequence is non-

negative and strictly increasing in the system size if and . The constant , and does

not depend on either or .

r of the proof:

and (EC.105)

where

and (EC.106)

and (EC.107)

and (EC.108)

(EC.109)

(EC.110)

(EC.111)

We now state and prove Lemma EC.8 that shows the existence of constants and through

in (EC.106) through (EC.111), respectively.
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LEMMA EC.8. The following claims hold for : (a)The constant

(b) The constant (c) The constant exists and it

(d) The constant (e) The constant exists

(f) The constant

Proof of Lemma EC.8: Part (a):

and . The function is strictly increasing when and

because

(EC.112)

for and . In addition, when , we have

(EC.113)

It follows from (EC.112) and (EC.113) that Part (b): . Then, the

and . The function is

strictly decreasing when and because

(EC.114)

for and . Furthermore, when , we have

(EC.115)

It follows from (EC.114) and (EC.115) that Part (c): . Then, the def-

inition in (EC.109) is equivalent to . The function is strictly decreasing

when and because

(EC.116)

for and . Moreover, when , we have

(EC.117)

It follows from (EC.116) and (EC.117) that Part (d): . Then, the

. The function is strictly

increasing when and because

(EC.118)



e-companion to Author: Pooled versus Dedicated Queues When Customers Are Delay-Sensitive ec21

for and . Also, for , we have

(EC.119)

By (EC.118) and (EC.119), Part (e):

in (EC.111) is equivalent to . Note that is strictly decreasing

when and because

(EC.120)

for and . Furthermore, for , we have

(EC.121)

By (EC.120) and (EC.121), Part (f): and . Then, the

. Note that both

and are strictly decreasing when and because

and (EC.122)

(EC.123)

for and . In addition, for , we have

(EC.124)

(EC.125)

By (EC.122) through (EC.125),

Proof of Theorem 2 - Part (a): Take any from (EC.105). First, we will

show that the percentage subsequence is non-negative under the stated conditions in part (a). When ,

from (EC.24). Below we will show by (EC.126) through (EC.128)

that for any when . Thus, implies for . Then, it follows from

Theorem 1-(a)-(i) that for any and hence when and

. This and the fact that implies complete our argument for the statement that

subsequence is non-negative for any under the stated conditions in part (a). We now show our above claim that

for any when . To do so, for any already meets the

conditions meets.

(EC.126)

(EC.127)

(EC.128)
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Based on these, suppose for a contradiction that for some . Then, for any ,

since and

strictly decreasing in when and . Thus,

.

Next, we prove that the percentage subsequence is strictly increasing when and . Take

any and such that . Let and , which imply that and

.Based on these, the outline of the remainder of our proof is as follows. By Proposition

2, . Thus,

(EC.129)

(EC.130)

We claim and show below that if and ,

(EC.131)

and

(EC.132)

Combining (EC.130) through (EC.132), we have

(EC.133)

if and . Recall from (EC.7) that

Since does not depend on , by (EC.133), is strictly increasing in when and

. As a result, is also strictly increasing in system size (i.e., ) when

and . We already know that is non-negative when and . Because

implies , part (a) follows.

inequality (EC.135), which will be used in later

steps of the proof. Recall that and , where . Then, the balking threshold in the

system with servers is

servers is . Then,

(EC.134)

We can represent as , where . Thus, (EC.134) implies

(EC.135)
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Recall from (EC.11) the average sojourn time in the SQ system. Then, because , in the SQ system

with servers, we have

(EC.136)

In the SQ system with servers,

(EC.137)

(EC.138)

We have (EC.137) because is increasing in by (EC.53) and from (EC.135). Based on (EC.136)

and (EC.138), we have

(EC.139)

where for . Note that when ,

(EC.140)

(EC.141)

The inequality (EC.140) is because when and , and by

(EC.107), thus

It follows from (EC.139) and (EC.141) that if and
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which proves the inequality in (EC.131).

We now show (EC.132). Recall from (8) and (EC.11) the average sojourn time in the pooled and SQ systems,

respectively. Then, if and ,

(EC.142)

(EC.143)

(EC.144)

(EC.145)

(EC.146)

(EC.147)

which proves the inequality in (EC.132). Let us explain why each of the inequalities in (EC.142) through (EC.147)

holds. The inequality (EC.142) is because for and for . The

inequality (EC.143) is because
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and for and ,

The inequality (EC.144) follows from the fact that

We have (EC.145) because and . The inequality (EC.146) is due to the fact that

is decreasing in when and , which is shown below, and hence . When ,

we have , and thus

Finally, the inequality (EC.147) is because when and , by (EC.108).

Proof of Theorem 2 - Part (b): Take any , and consider the system size subsequence

from (EC.105). When , .

For any , according to the proof of part (a), the conditions in Theore

when and . As a result, the percentage subsequence for social welfare is

non-negative under the conditions stated in part (b).

We now show that if and , then is strictly increasing in , .

, the system size is equal to . Then the balking threshold

in the pooled system is

(EC.148)

where

and (EC.149)

Throughout this proof, we will include the system size as an argument of , and ; here, the index

und, which we will use later in the proof.

LEMMA EC.9. If and ,

Proof of Lemma EC.9: Recall from Lemmas 2 and EC.1 that

(EC.150)
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and

(EC.151)

We will prove this lemma under each of the two possible cases about .

Case 1: First, we prove Lemma EC.9 for , i.e.,

which is equivalent to

(EC.152)

Using (EC.150) and the fact that ,

(EC.153)

and

(EC.154)

Then . Since is an integer, then for .

. Then, the social welfare for the scaled queuing system, that is, the M/M/1/K system described

in Lemma EC.1, can be expressed as follows.

(EC.155)

Replacing with and with in the above expression for , we have

Then, for , we have the following when and :

(EC.156)

(EC.157)

The inequality (EC.156) is because when and since is

strictly decreasing when and according to the proof of Lemma EC.8-(c) and according to

(EC.109). Moreover,

(EC.158)
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Combing (EC.157) and (EC.158), we have

(EC.159)

Combining (EC.153) and (EC.159), (EC.152) follows. Thus, the lemma holds for .

Case 2: Now, we focus on the case that . When and ,

(EC.160)

To get a preliminary bound, we now assume that and , which imply that the social welfare is a

continuous function of . Later, we will eliminate that assumption to focus on and use this preliminary bound

to prove the statement in Lemma EC.9. Taking the derivative of (EC.160), we get:

(EC.161)

(EC.162)

(EC.163)

(EC.164)

(EC.165)

Here, the inequality (EC.161) follows from the facts that and . The

inequality (EC.162) is because when . We have (EC.163) because . The

reason for (EC.164) is as follows. By the proof of Lemma EC.8-(d), if and , which implies

, , i.e., .

Based on these, we have
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(EC.166)

(EC.167)

(EC.168)

The above inequality in (EC.166) is because , and the inequality in (EC.167) follows from (EC.165) and

(EC.170), which will be shown below. We now show (EC.170). We have

(EC.169)

(EC.170)

Here, the inequality (EC.169) follows because (EC.160) holds and , and the reason for (EC.170)

is as follows. By the proof of Lemma EC.8-(c), is strictly decreasing when and . Also,

according to (EC.109). Thus, when and , since implies

. (It is obvious that since .)

Based on the analysis above, we now show the statement in the lemma. If and ,

(EC.171)

(EC.172)

(EC.173)

Above, (EC.171) follows from (EC.168); (EC.172) is because as is increasing in

for , , and by (EC.168). These complete the proof of Lemma EC.9.

For any system size , we have
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(EC.174)

Based on this, we have the following lemma.

LEMMA EC.10. Recall that and . Then, for and ,

Proof of Lemma EC.10:We have the the following for and :

(EC.175)

(EC.176)

(EC.177)

(EC.178)
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(EC.179)

(EC.180)

(EC.181)

We now explain how we obtain the numbered inequalities above. The inequality (EC.175) is due to (EC.174). Because

and , (EC.176) follows from the fact that .

The inequality (EC.177) is because when , and . The

inequality (EC.178) is because . The inequality (EC.179) is due to the fact that is

strictly decreasing in when , and as shown at the end of the proof. By the proof of

Lemma EC.8-(e), if and , and thus (EC.180) follows. Finally, the inequality

(EC.181) is because when and .

It only remains to prove that assuming that and . Note that

(EC.182)

Here, (EC.182) because , and .

We already know from (EC.170) that when and . Combining this

with Lemma EC.10, we have the following for and :

(EC.183)

This and Lemma EC.10 together imply that for and ,

(EC.184)

Then, if and , we have the following for any and :

(EC.185)

(EC.186)

(EC.187)
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Here, the inequality (EC.185) is because by Proposition 2. The inequality

(EC.186) is due to Lemma EC.9. The inequality (EC.187) follows from (EC.184).

Based on (EC.187), for any given , is increasing in if and .

We already know that the subsequence is non-negative when and . This and the fact that

implies complete the proof of the claim.

Appendix I: Proof of Theorem 3

Because by Proposition 2,

(EC.188)

and (EC.189)

Then , and . Recall from (EC.8) that the social welfare in the dedicated system

is

(EC.190)

Similarly, the social welfare in the M/M/1/K system described in Lemma EC.1 can be expressed as follows.

(EC.191)

such that for . This implies that if , then ,

, and . Thus, (EC.190) and (EC.191) reduce to

(EC.192)

(EC.193)

These and (EC.188) imply that for

Thus,

This and the fact that for any complete the proof.



ec32 e-companion to Author: Pooled versus Dedicated Queues When Customers Are Delay-Sensitive

Appendix J: Proof of Proposition 4

Proof of Part (a): In both dedicated and pooled systems, the service fee affects the social welfare only through

balking thresholds. In the dedicated system, suppose that the fee that maximizes welfare is and the resulting balking

threshold is . Consider another system called “dedicated help system,” which is a variation of the dedicated system.

In this system, there are single-server systems. The total arrival for the system follows Poisson distribution with an

arrival rate , and each customer is routed to a server with probability . Thus, the arrival for each single-server

system is a Poisson process with rate . In the dedicated help system, all servers are homogeneous and service time

of each server is exponentially distributed with rate . As soon as a single-server system has no customers, the server

gets into “help” mode and he randomly chooses another single-server system in which there is at least one customer

waiting (in addition to the customer the server of that queue is serving) and starts serving that customer. If there is no

such system, the server stays idle until either a customer arrives to that server or a customer arrives to another queue

whose server is busy. (If there is more than one server idling in the “help” mode, one of the servers, who will help, can

be chosen randomly whenever a customer arrives at the queue of a busy server.) When a server starts helping another

server, the help service process is interrupted and canceled altogether, and the customer being served goes back to her

original queue either if a customer arrives to the queue of the server who is helping or the server who is being helped

mer currently being served by the helper server. The new

arrival to a server will be accepted if and only if the number of customers which belong to that server (including the

ones that are originally routed to the queue of the server but are helped by other servers, and excluding the one (if any)

that is under help of the server) .

Let denote the number of customers that belong to the th server of the dedicated system at time and denote

by the number of customers that belong to the th server of the dedicated help system at time . (The latter

excludes the customer from other servers helped by the th server, and includes the customers from the th queue helped

by the other servers.) By sample path comparison, , . Let and denote the throughput for

the server in the dedicated system and in the dedicated help system, respectively. Then, we have because

if an arrival joins the th queue of the dedicated system, it implies that the number of customers in the th dedicated

sub-system is less than , and so, she will also join the help system since the number of customers that belong to the
th server of the dedicated help system is even smaller. From this and the fact that , it follows that

the average sojourn time for the arrivals to server who join the dedicated help system is smaller than that who join

the dedicated system, i.e., .

Denote by the social welfare under the described dedicated help system. By the throughput and average

sojourn time inequalities above, the dedicated help system results in larger social welfare than the dedicated system

with fee , i.e., .

The dedicated help system can be thought as a kind of pooled system, but with a different admission policy. Because

the socially-optimal admission control for the pooled system is a deterministic threshold policy and it can be achieved

by setting a service fee, the pooled system with the socially-optimal fee (for the pooled system) will result in larger

social welfare than the dedicated help system, i.e., . As a result, .

Proof of Part (b): Denote by and the optimal service fees that maximize the revenue in the dedicated system

and the pooled system, respectively. For any fee , the revenue of the dedicated system is and
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the revenue of the pooled system is Replacing with in the proof of Proposition 1 and

applying the same ideas as in the proof of Proposition 1, one can show that . Thus,

. Then, since is the fee that maximizes the revenue for the pooled

system.

Appendix K: Explanations and Proofs of Statements in Subsection 4.4

K.1. Preliminary Analysis

Consider the explained unobservable queue setting in Subsection 4.4. In that setting, let and represent the

equilibrium social welfare and average sojourn time in the system , respectively. Moreover, let the long-

run average number of customers in the unobservable pooled system, and be the long-run average number of

customers in one of the unobservable dedicated sub-systems in equilibrium. Then,

if

if
(EC.194)

where is the equilibrium effective arrival rate in the pooled system and is the equilibrium effective arrival rate

in one of the unobservable dedicated sub-systems.14

Lemmas EC.11 and EC.12 in this section identify equilibrium average sojourn time and social welfare for unob-

servable pooled and dedicated systems.

REMARK EC.1. To present the supplementary results in full generality, we will consider an unobservable system

. Obviously, the analysis with is a special case of the analysis presented here.

Let represent the average sojourn time in the system given that the effective arrival rate to a queue is

. Then, if , and if

small, i.e.,

(EC.195)

vice is valuable enough that the unobservable system is not

empty all the time.

Based on these, there exists a unique symmetric equilibrium such that the equilibrium joining probability for

is

if

if
(EC.196)

where is the unique solution of

Let us explain the conditions in (EC.196). The condition , which is equivalent to

, means that even if all potential customers join (i.e., the effective arrival rate is equal to the potential arrival rate),

each customer gains a non-negative long-run average net ben

unique equilibrium strategy for all customers.We now explain the case with in (EC.196). The

14 It is perhaps worth noting that (EC.194) and (3) are different as (EC.194) is concerned with the equilibrium performance mea-
sures, such as , and .
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condition implies that if all potential customers join, each joining customer gets a negative

f by balking in that case, joining with probability 1 cannot

be an equilibrium strategy. The aforementioned condition also implies that if none of the potential customers join, a

customer is better off by joining the queue as its long-run av

balking with probability 1 cannot be an equilibrium strategy either. The unique equilibrium strategy is such that the

joining probability is the solution of

that (EC.196) does not include the case . This is because (EC.195) implies that .

Based on (EC.196), in equilibrium, the effective arrival rate to a queue is

(EC.197)

and the average sojourn time in the system is

(EC.198)

It is worth noting that , and thus, in equilibrium, each system is stable regardless of the fact that

or .

d in proving results in Section 4.4. For these

lemmas, recall the notation .

LEMMA EC.11. Recall Remark EC.1. In the unobservable pooled system, the average sojourn time and social

welfare in equilibrium are respectively given by

if and or

if and
(EC.199)

if and or

if and

(EC.200)

where lowing equation under the stated conditions in the

:

(EC.201)

REMARK EC.2. By the proof of Lemma EC.11, there exists a unique , or

and .

Proof of Lemma EC.11: Consider the unobservable pooled system, which is an M/M/N queueing system. Recall that

the service rate of each server is and suppose that the effective arrival rate is . Then, the stationary probability

distribution of the number of customers in this system is as follows (see Section 7.3.3 of Kulkarni (2010)):

(EC.202)

for and for (EC.203)
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where . Then, in this system, the long-run average number of customers is

Because by Little’s law, we have

Based on this, if the effective arrival rate is and , which is equivalent to ,

On the other hand, if the effective arrival rate is and , we have . Combining these two cases with

the fact that , it follows from (EC.196) and (EC.197) that the effective arrival rate in equilibrium is

if and or

if and
(EC.204)

where the equilibrium joining probability is chosen such that . (It is perhaps worth noting that

we did not include the condition s that.)

The solution exists and is unique if

of (EC.204). The reason is as follows. It is shown at the end of this proof that strictly increases with for

. We already know that is a continuous function for . These and the facts that

by (EC.195) and imply the existence and the uniqueness of .

Based on these, by (EC.198), in equilibrium, the long-run average sojourn time is

if and or

if and

By Little’s Law, . Therefore, in equilibrium, the long-run average number of customers in the system is

if and or

if and

Recall the social welfare from (EC.194). Then, using the expressions above, (EC.200) immediately follow.

We now show that is strictly increasing with . Note that
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Because is strictly decreasing in for , is strictly

increasing in .

LEMMA EC.12. Recall Remark EC.1. In the unobservable dedicated system, the average sojourn time and social

welfare in equilibrium are respectively given as

if and or

if and
(EC.205)

if and or

if and
(EC.206)

Proof of Lemma EC.12: Each unobservable dedicated queue is an M/M/1 queue with service rate . Suppose that

the effective arrival rate in a queue is . Then, by Section 7.3.1 of Kulkarni (2010), the average sojourn time is

and the average number of customers in one of the separate sub-systems is . Based on

this,

if

if

Using (EC.196) through (EC.198), the equilibrium effective arrival rate in each queue is

if and or

if and
(EC.207)

where is the unique solution of , and the equilibrium average

sojourn time is

if and or

if and

(Note that we did not include the condition

implies that.) From Little’s law, we have . Therefore,

if and or

if and

Plugging the expressions above in formula (EC.194), we complete the proof of Lemma EC.12.
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K.2. Proof of Proposition 5-(a)

Recall Remark EC.1. Recall also Lemmas EC.11 and EC.12, and their proofs. Note that the unobservable pooled

system is an M/M/N system with the equilibrium effective arrival rate (EC.204) and each unobservable dedicated sub-

system (that consists of one dedicated line and its server) is an M/M/1 system with the equilibrium effective arrival rate

(EC.207). Note also that represents the average sojourn time in the M/M/N system with the total effective

arrival rate and the service rate for each server, and represents the average sojourn time in the M/M/1

system with the effective arrival rate and service rate .

We claim and show in Lemma EC.13 at the end of this section that

for (EC.208)

and hence

for (EC.209)

Using (EC.209), we will prove the claim in Proposition 5-(a) under two main cases. Case 1: Suppose that and

. Then, by Lemma EC.12 and its proof, , and in equilibrium. This and (EC.209)

imply that . Then, by the proof of Lemma EC.11, and in equilibrium. As a result,

(EC.210)

Recall the social welfare from (EC.194), and recall that . Then,

and

Because by (EC.210), . This completes the proof of Proposition 5-(a) under Case 1.

Case 2: Suppose now that either and , or . From Lemma EC.12, it follows that, in equilibrium,

the average sojourn time in the unobservable dedicated system is

(EC.211)

and the equilibrium social welfare in the dedicated system is

(EC.212)

Given these performance metrics in the dedicated system, we now prove the claim by considering the following two

subcases for .

Case 2.1: Suppose that . Then, by Lemma EC.11, the equilibrium average sojourn time in the pooled

system is , which is equal to by (EC.211). Thus, by Lemma EC.11,

(EC.213)

We now show that

(EC.214)
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Suppose for a contradiction that . Then, (EC.208) and the fact that strictly increases in for

imply that

(EC.215)

But, this contradicts with . Thus, we have (EC.214). Based on (EC.214), from (EC.212) and (EC.213), it

follows that .

Case 2.2: Suppose that . Then, and in equilibrium. Thus,

, which implies that the equilibrium long-run average sojou

. Thus, the equilibrium social welfare in the pooled system is

which completes the proof of Case 2.2.

Note that combining Case 1 and Case 2 covers the entire parameter space. Thus, the claim in Proposition 5-(a)

follows.

The following lemma shows our claim in (EC.208).

LEMMA EC.13. for .

Proof of Lemma EC.13: Suppose that . Recall that represents the average sojourn time in the

M/M/N system with the total effective arrival rate and the service rate for each server, and represents

the average sojourn time in the M/M/1 system with the effective arrival rate and service rate . Denote by

total number of customers in of the M/M/1 lines in the steady-state, and let

the aforementioned M/M/N system. Based on this, to show our claim, we will use standard likelihood comparison

technique (see, for instance, Smith and Whitt (1981)). Let be the transition rate from state to in

the pooled system (in the steady-state), be the transition rate from state to in the dedicated

system and is the state of the dedicated system (i.e., number of customers in each of the lines) at time , for any

. Because for each regardless of , in the steady-state, we have

and

Thus, we have

(EC.216)

Using this, we now show that . Note that (EC.216) implies that for all ,

, which is equivalent to

(EC.217)

The summation on both sides of (EC.217) over from to gives

(EC.218)
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Similarly, the summation on both sides of (EC.217) over from to results in

(EC.219)

Combining (EC.218) and (EC.219) and letting , we have

(EC.220)

Thus, for any non-negative integer , and hence

(EC.221)

Observe that the long-run average number of customers in one of the separate dedicated sub-systems (i.e., ) and

the long-run average number of customers in the pooled system (i.e., ) satisfy and .

Then, by Little’s Law and (EC.221),

This completes the proof of the claim.

K.3. Proof of Proposition 5-(b)

ement of Proposition 5-(b).

(i) Welfare-maximizing fee: For each system , a fee is chosen to maximize the social welfare:

(EC.222)

(ii) Revenue-maximizing fee: For each system , a fee is chosen to maximize the service provider’s revenue:

(EC.223)

In both (EC.222) and (EC.223), represents the equilibrium joining probability for .

call that the maximum social welfare under the

welfare maximization formulation is as in (EC.222). Note that (EC.222), i.e., choosing the fee to maximize equilibrium

social welfare, is equivalent to choosing the effective arrival rate to maximize equilibrium social welfare as below:

if

if
(EC.224)

We only need to focus on the case that in both systems since the the system will be unstable otherwise. We

already know that for according to Lemma EC.13. Thus, .

We now prove the statement in the parentheses. Note that (EC.223) is equivalent to choosing the effective arrival

rate to maximize the equilibrium revenue

if

if
(EC.225)

This and (EC.224) imply that the maximum revenue is the same as the maximum social welfare in equilibrium. Then,

the claim in parentheses immediately follows from Proposition 5-(b) in the absence of parentheses.
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Appendix L: Proof of Proposition 6

L.1. Proof of Part (a)

We already proved in Proposition 5-(a) that the unobservable pooled system outperforms the unobservable dedicated

system in social welfare. Based on this, we only need to compare the unobservable pooled system with the observable

pooled system to prove Proposition 6-(a). Below, we will show that the observable pooled system results in larger

equilibrium social welfare than the unobservable pooled system. There can be two cases related to :

Case A: Suppose that . Then, by Lemma EC.11, in the unobservable pooled system, average sojourn

time and social welfare in equilibrium are the following, respectively:

and (EC.226)

Recall the social welfare in the observable pooled system from Lemma 1. We claim and show below that

. Combining this with (EC.226), we have .

It only remains to prove our claim that . Recall from (EC.195) that . Then, each joining customer

customers in

the system upon arrival receives strictly positive expecte for . As a

result, in this case.

Case B: Suppose that . Then, by Lemma EC.11 and its proof, and for the unobserv-

able pooled system. We now show that the observable pooled system results in strictly larger social welfare than the

unobservable pooled system, i.e., . Recall the from Lemma 1, and observe that using the stationary

probability distribution for the number of customers in the observable pooled system (in the proof of

Lemma 1), can also be expressed as follows:

(EC.227)

(EC.228)

Here, the inequality (EC.227) holds because for any .

Combining Cases A and B, it follows that the observable pooled systems results in larger social welfare than the

unobservable pooled system. This and Proposition 5-(a) complete our proof for Proposition 6-(a).
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L.2. Proof of Part (b)

According to Propositions 4 and 5-(b), when the service fee is set to maximize the social welfare, the maximum social

welfare in the pooled system is larger than that in the dedicated system for both observable and unobservable cases.

Thus, to prove the claim, we only need to compare the observable pooled system with the unobservable pooled system.

To do so, consider an alternative setting in which admissions to an M/M/N system can be controlled rather than cus-

tomers making their own joining/balking decisions. Among all admission control policies (including the randomized

ones), the optimal admission rule that maximizes the social welfare is a deterministic control limit rule that induces

a queue capacity. (This is because this alternative formula

Because that optimal queue capacity can be achieved by imposing a service fee in the observable pooled system where

customers make their own joining decisions, the observable pooled system achieves larger maximum social welfare

than the unobservable pooled system when in each system, the fee is set to maximize the social welfare. From this, the

claim immediately follows.

Appendix M: Statement and Proof of Proposition EC.2

PROPOSITION EC.2. h a general distribution function

ial welfare (average sojourn time) under the

unobservable pooled system is greater (smaller) than or equal to the one under the unobservable dedicated system.

Proof of Proposition EC.2: has a general distribution with the p.d.f. and the

c.d.f , and consider unobservable systems. We prove the claim under each of the

three possible cases about below:

Case 1: Suppose that . Then, must be true and in equilibrium all customers join the dedicated

system. By Lemma EC.13, , thus all customers in the pooled system also join. As a result,

in equilibrium, and

.

Case 2: Suppose that . Then, no customer in the dedicated system joins. Moreover, no customer

joins in the pooled system as well since .

Case 3: Suppose that and such that only

join in equilibrium and where . Note

that is the intersection point of functions and for . (The intersec-

tion point exists and is unique as is strictly increasing and is strictly decreasing.) We consider two pos-

sible subcases: Case 3.1: Suppose that . Then, in the pooled system, all customers join. Because

, , i.e., , and

. Case 3.2: Suppose that

and join

in equilibrium and . Note that is the intersection point of functions and

for . Since for any ,

and , i.e., . As a result,

.
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Figure EC.1 The comparison of pooled and dedicated systems with the following parameters: , and .

Appendix N: Additional Numerical Studies for Sections 3 and 5

This section includes Figures EC.1 and EC.2 that provide additional numerical examples for Sections 3 and 5.

Buffer Size

Figure EC.2 The following parameters are used: , , , and .


