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Online Appendix

Appendix A: Proof of Theorem 1.

The proof relies on several theorems from Sennott (2009). First, according to Theorem 7.2.3 of Sen-

nott (2009), if the (SEN) Assumptions as stated in the reference hold, then we know that there

exists a finite constant J and a finite function h that satisfy the ACOI (average cost optimal

inequalities)

g+h(i)≥min
a

{
C(i, a) +

∑
j

Pij(a)h(j)

}
, i∈ S,

where

C(0) = 0; C(r,n) =C(p,n) = ncw, ∀n≥ 1,

and for 1≤ i≤K and n≥ 1,

C(αi, n; 0) = ncw +αiγScad, C(αi, n; 1) = ncw + γBctr.

Furthermore, there exists an average cost optimal policy f that achieves the minimum in the ACOI.

Now, according to Theorem 7.5.6 of Sennott (2009), if the (BOR) Assumptions as stated in the

reference, hold then we know that the (SEN) Assumptions also hold. Hence we only need to show

that (BOR) Assumptions hold under the condition that

λ

(
1

γS
+

α

γB

)
< 1.

We consider the stationary policy d that always chooses to request a hospital bed at the time

of triage. Then under the assumption that λ
(

1
γS

+ α
γB

)
< 1, the Markov chain induced by d is an

M/G/1 queue with service time, denoted by L, which can be described as

L=

{
S w.p. 1−α
max(S,B) w.p. α

,

thus

E[L] = (1−α)E[S] +αE[max(S,B)]

≤ (1−α)E[S] +αE[S+B]

= (1−α)
1

γS
+α

(
1

γS
+

1

γB

)
=

1

γS
+

α

γB
,

then,

ρ= λE[L]≤ λ
(

1

γS
+

α

γB

)
< 1,
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and hence the Markov chain under d is a positive recurrent class Rd = Y = {0} ∪ {(m,n) |m ∈

{αi}Mi=1 ∪{r, p}, 1≤ n≤ l}.

For any z ∈ Rd = Y, d is a z-standard policy because the Markov chain under d is positive

recurrent (see Definitions 7.5.1 and C.2.5 in Sennott (2009)), and hence the expected first passage

time and associated total expected cost from any one state to another are both finite. Thus,

condition (BOR1) holds.

Now, since the resulting Markov chain under d is positive recurrent, the long run average cost

under d, denoted by Jd, is finite. Choose ε= 1. Define D= {s |C(s, a)≤ Jd + 1for some a}. Then,

D= {0}∪A∪B, where

A= {(αi, n) | 1≤ i≤M and 1≤ n≤
⌊

1

cw
(Jd + 1−min{αiγScad, γBctr})

⌋
},

and

B = {(r,n) and (p,n) | 1≤ n≤
⌊
Jd + 1

cw

⌋
}.

It is easy to see that D is a finite set since Jd is finite and thus we can conclude that (BOR2) holds.

Finally, (BOR3) holds because D ⊂Rd, and thus D−Rd = ∅. This completes the proof of the

theorem. �

Appendix B: Proof of Theorem 2.

First, we introduce the finite-horizon version of the uniformized, discrete-time version of our prob-

lem described in Section 5.3. Let V π
m(x) denote the total expected cost under policy π over a period

of m stages starting from state x. The optimal expected m-stage cost then can be expressed as

Vm(x) = inf
π∈Π

V π
m(x),

and satisfies the following finite horizon optimality equations: For m≥ 1,

Vm(0) = λ
∑
j

qjVm−1(αj,1) + (γS + γB)Vm−1(0). (EC.B.1)

For all m≥ 1, n≥ 1, and αi ∈Ω,

Vm(αi, n) = ncw +λVm−1(αi, n+ 1) + (1−αi)γS
∑
j

qjVm−1(αj, n− 1)

+αiγSVm−1(p,n) + γB min{Vm−1(αi, n) +
αiγS
γB

cad, Vm−1(r,n) +
γS + γB
γB

ctr}, (EC.B.2)

where Vm(αj,0) = Vm(0) =
∑

j qjVm(αj,0), for all j.

For all m≥ 1 and n≥ 1,

Vm(r,n) = ncw +λVm−1(r,n+ 1) + γS
∑
j

qjVm−1(αj, n− 1) + γBVm−1(r,n), (EC.B.3)



e-companion to Chen et al.: Bed Requests at Triage based on Admission Predictions ec3

Vm(p,n) = ncw +λVm−1(p,n+ 1) + γB
∑
j

qjVm−1(αj, n− 1) + γSVm−1(p,n). (EC.B.4)

Next, we show that the optimality operator preserves certain conditions as stated in the following

lemma. It is important to note that while only some of the conditions stated in the lemma will be

key to establishing the threshold result, the proof of those essential conditions requires showing all

of them together.

B.1. Lemmas needed for the proof of Theorem 2

Lemma EC.1. Suppose for any m≥ 1 we have that

1) Vm(r,n)−
∑

j qjVm(αj, n− 1) is a non-negative non-decreasing function of n for all n≥ 1.

2) Vm(αi, n) −
∑

j qjVm(αj, n − 1) is a non-decreasing function of n for all i and n ≥ 1 and

Vm(αi,1)−
∑

j qjVm(αj,0)≥ αicad.

3) min{Vm(αi, n) + αiγS
γB

cad, Vm(r,n) + γS+γB
γB

ctr}−Vm(r,n) is a non-decreasing function of n for

all i and n≥ 1.

Then we have

Condition 1. min{Vm(αi, n) + αiγS
γB

cad, Vm(r,n) + γS+γB
γB

ctr} −
∑

j qjVm(αi, n − 1) is a non-

decreasing function of n for all i and n ≥ 1, and min{Vm(αi,1) + αiγS
γB

cad, Vm(r,1) + γS+γB
γB

ctr} −∑
j qjVm(αi,0)≥ αi(γS+γB)

γB
cad for all i.

Proof of Lemma EC.1. For the first part of Condition 1, we first write

min{Vm(αi, n) +
αiγS
γB

cad, Vm(r,n) +
γS + γB
γB

ctr}−
∑
j

qjVm(αj, n− 1)

=

[
min{Vm(αi, n) +

αiγS
γB

cad, Vm(r,n) +
γS + γB
γB

ctr}−Vm(r,n)

]
+

[
Vm(r,n)−

∑
j

qjVm(αj, n− 1)

]
.

Then, the first part of the condition immediately follows by noting that the right hand side is a

non-decreasing function of n for all αi ∈Ω and n≥ 1 using 3) and 1) for Vm.

To show the second part of Condition 1, let Nm(αi) = inf{n : Vm(αi, n) + αiγS
γB

cad > Vm(r,n) +

γS+γB
γB

ctr}. First suppose that Nm(αi) = 1. Then

min{Vm(αi,1) +
αiγS
γB

cad, Vm(r,1) +
γS + γB
γB

ctr}−
∑
j

qjVm(αj,0)

=

[
Vm(r,1)−

∑
j

qjVm(αj,0)

]
+
γS + γB
γB

ctr

≥ γS + γB
γB

ctr ≥
αi(γS + γB)

γB
cad,
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where for the first inequality, we used 1) for Vm. Now, suppose that Nm(αi)≥ 2. Then

min{Vm(αi,1) +
αiγS
γB

cad, Vm(r,1) +
γS + γB
γB

ctr}−
∑
j

qjVm(αj,0)

=

[
Vm(αi,1)−

∑
j

qjVm(αj,0)

]
+
αiγS
γB

cad

≥ αicad +
αiγS
γB

cad =
αi(γS + γB)

γB
cad,

where the inequality follows from 2) for Vm. This completes the proof for the condition. �

Lemma EC.2. Suppose for any m≥ 1 we have that Vm(αi, n)−Vm(r,n) is a non-decreasing func-

tion of n for all i and n≥ 1. Then we have

Condition 2. Vm(αi, n)−min{Vm(αi, n) + αiγS
γB

cad, Vm(r,n) + γS+γB
γB

ctr} is a non-decreasing func-

tion of n for all i and n ≥ 1, and Vm(αi,1) − min{Vm(αi,1) + αiγS
γB

cad, Vm(r,1) + γS+γB
γB

ctr} ≥
−αiγS

γB
cad for all i.

Condition 3. min{Vm(αi, n)+ αiγS
γB

cad, Vm(r,n)+ γS+γB
γB

ctr}−Vm(r,n) is a non-decreasing function

of n for all i and n≥ 1.

Proof of Lemma EC.2. Proof of Condition 2: The second part of the condition is immediate by

noting that

Vm(αi, n)−min{Vm(αi, n) +
αiγS
γB

cad, Vm(r,n) +
γS + γB
γB

ctr} ≥ Vm(αi, n)−
[
Vm(αi, n) +

αiγS
γB

cad

]
=−αiγS

γB
cad.

To prove the first part of the condition, we need to show that for all i and n≥ 1

Vm(αi, n+ 1)−min{Vm(αi, n+ 1) +
αiγS
γB

cad, Vm(r,n+ 1) +
γS + γB
γB

ctr}

≥ Vm(αi, n)−min{Vm(αi, n) +
αiγS
γB

cad, Vm(r,n) +
γS + γB
γB

ctr}.

Now, let Nm(αi) = inf{n : Vm(αi, n) + αiγS
γB

cad > Vm(r,n) + γS+γB
γB

ctr}. Then, since Vm(αi, n)−
Vm(r,n) is a non-decreasing function of n for all i and n≥ 1 we have that Vm(αi, n) + αiγS

γB
cad >

Vm(r,n) + γS+γB
γB

ctr if and only if n≥Nm(αi). Consequently, for 1≤ n≤Nm(αi)− 2 we have[
Vm(αi, n+ 1)−min{Vm(αi, n+ 1) +

αiγS
γB

cad, Vm(r,n+ 1) +
γS + γB
γB

ctr}
]

−
[
Vm(αi, n)−min{Vm(αi, n) +

αiγS
γB

cad, Vm(r,n) +
γS + γB
γB

ctr}
]

=[
Vm(αi, n+ 1)−Vm(αi, n+ 1)− αiγS

γB
cad

]
−
[
Vm(αi, n)−Vm(αi, n)− αiγS

γB
cad

]
= 0≥ 0.
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For n≥Nm(αi) we have[
Vm(αi, n+ 1)−min{Vm(αi, n+ 1) +

αiγS
γB

cad, Vm(r,n+ 1) +
γS + γB
γB

ctr}
]

−
[
Vm(αi, n)−min{Vm(αi, n) +

αiγS
γB

cad, Vm(r,n) +
γS + γB
γB

ctr}
]

=[
Vm(αi, n+ 1)−Vm(r,n+ 1)− γS + γB

γB
ctr

]
−
[
Vm(αi, n)−Vm(r,n)− γS + γB

γB
ctr

]
= [Vm(αi, n+ 1)−Vm(r,n+ 1)]− [Vm(αi, n)−Vm(r,n)]≥ 0,

because Vm(αi, n)−Vm(r,n) is a non-decreasing function of n by the assumption of the lemma.

For n=Nm(αi)− 1 we have[
min{Vm(αi,Nm(αi)) +

αiγS
γB

cad, Vm(r,Nm(αi)) +
γS + γB
γB

ctr}−Vm(r,Nm(αi))

]
−
[
min{Vm(αi,Nm(αi)− 1) +

αiγS
γB

cad, Vm(r,Nm(αi)− 1) +
γS + γB
γB

ctr}−Vm(r,Nm(αi)− 1)

]
=

[
Vm(r,Nm(αi)) +

γS + γB
γB

ctr−Vm(r,Nm(αi))

]
−
[
Vm(αi,Nm(αi)− 1) +

αiγS
γB

cad−Vm(r,Nm(αi)− 1)

]
=

[
Vm(r,Nm(αi)− 1) +

γS + γB
γB

ctr

]
−
[
Vm(αi,Nm(αi)− 1) +

αiγS
γB

cad

]
≥ 0,

which follows from the definition of Nm(αi). Thus we have proved Condition 2.

Proof of Condition 3: We need to show that for all n≥ 1

min{Vm(αi, n+ 1) +
αiγS
γB

cad, Vm(r,n+ 1) +
γS + γB
γB

ctr}−Vm(r,n+ 1)≥

min{Vm(αi, n) +
αiγS
γB

cad, Vm(r,n) +
γS + γB
γB

ctr}−Vm(r,n).

Again, let Nm(αi) be defined as before when establishing Condition 2. For 1≤ n≤Nm(αi)− 2

we have[
min{Vm(αi, n+ 1) +

αiγS
γB

cad, Vm(r,n+ 1) +
γS + γB
γB

ctr}−Vm(r,n+ 1)

]
−
[
min{Vm(αi, n) +

αiγS
γB

cad, Vm(r,n) +
γS + γB
γB

ctr}−Vm(r,n)

]
=

[
Vm(αi, n+ 1) +

αiγS
γB

cad−Vm(r,n+ 1)

]
−
[
Vm(αi, n) +

αiγS
γB

cad−Vm(r,n)

]
= [Vm(αi, n+ 1)−Vm(r,n+ 1)]− [Vm(αi, n)−Vm(r,n)]≥ 0,

because by assumption, Vm(αi, n)−Vm(r,n) is non-decreasing with respect to n.
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For n≥Nm(αi) we have[
min{Vm(αi, n+ 1) +

αiγS
γB

cad, Vm(r,n+ 1) +
γS + γB
γB

ctr}−Vm(r,n+ 1)

]
−
[
min{Vm(αi, n) +

αiγS
γB

cad, Vm(r,n) +
γS + γB
γB

ctr}−Vm(r,n)

]
=
γS + γB
γB

ctr−
γS + γB
γB

ctr = 0≥ 0.

When n=Nm(αi)− 1 we have[
min{Vm(αi,Nm(αi)) +

αiγS
γB

cad, Vm(r,Nm(αi)) +
γS + γB
γB

ctr}−Vm(r,Nm(αi))

]
−
[
min{Vm(αi,Nm(αi)− 1) +

αiγS
γB

cad, Vm(r,Nm(αi)− 1) +
γS + γB
γB

ctr}−Vm(r,Nm(αi)− 1)

]
=

[
Vm(r,Nm(αi)) +

γS + γB
γB

ctr−Vm(r,Nm(αi))

]
−
[
Vm(αi,Nm(αi)− 1) +

αiγS
γB

cad−Vm(r,Nm(αi)− 1)

]
=

[
Vm(r,Nm(αi)− 1) +

γS + γB
γB

ctr

]
−
[
Vm(αi,Nm(αi)− 1) +

αiγS
γB

cad

]
≥ 0,

which follows from the definition of Nm(αi). Thus we have established Condition 3. �

Lemma EC.3. Let αicad ≤ ctr, for all αi ∈Ω and suppose that the following six conditions all hold

for 0≤ k≤m− 1 where m≥ 1:

Condition 4. Vk(αi, n)−Vk(r,n) is a non-decreasing function of n for all i and n≥ 1.

Condition 5. Vk(p,n)−
∑

j qjVk(αj, n− 1) is a non-negative non-decreasing function of n for all

n≥ 1.

Condition 6. Vk(αi, n)− (1− αi)
∑

j qjVk(αj, n− 1)− αiVk(p,n) is a non-decreasing function of

n for all i and n≥ 1, and Vk(αi,1)− (1−αi)
∑

j qjVk(αj,0)−αiVk(p,1)≥ αicad.

Condition 7. Vk(r,n)−
∑

j qjVk(αj, n− 1) is a non-negative non-decreasing function of n for all

n≥ 1.

Condition 8. Vk(αi, n)−
∑

j qjVk(αj, n− 1) is a non-decreasing function of n for all i and n≥ 1

and Vk(αi,1)−
∑

j qjVk(αj,0)≥ αicad.

Condition 9. Vk(αi, n) is a non-decreasing function of i for all n≥ 1.

Then Condition 4 through 9 also hold for k=m, i.e., Condition 4 through 9 are preserved under

the optimality equations.

Proof of Lemma EC.3. To show each of the properties we use induction in a similar manner.

Let m≥ 1 and suppose that condition 4 through 9 as given in the statement of the lemma all hold

for 0≤ k≤m− 1. We will show that the same conditions then also hold for k=m.
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First, using Lemma EC.2 and Condition 4 with 0≤ k≤m−1 we can conclude that Condition 2

and 3 also hold for all 0≤ k≤m−1. Then, using Lemma EC.1 and noting that the three conditions

stated in the lemma are satisfied by Condition 7, 8, and 3 for 0≤ k≤m− 1, we can conclude that

Condition 1 also holds for all 0≤ k≤m− 1.

Proof of Condition 4: For n≥ 1, using (EC.B.2) and (EC.B.3) we have

Vm(αi, n)−Vm(r,n) =

λ [Vm−1(αi, n+ 1)−Vm−1(r,n+ 1)] +αiγS

[
Vm−1(p,n)−

∑
j

qjVm−1(αj, n− 1)

]

+ γB

[
min{Vm−1(αi, n) +

αiγS
γB

cad, Vm−1(r,n) +
γS + γB
γB

ctr}−Vm−1(r,n)

]
.

From Conditions 4, 5 and 3 (with k = m− 1), we know that the right hand side of the above

equation is non-decreasing in n for n≥ 1 and thus we can conclude that Condition 4 also holds for

k=m.

Proof of Condition 5: For n≥ 2, using (EC.B.4) and (EC.B.2) we have

Vm(p,n)−
∑
j

qjVm(αj, n− 1)

= cw +λ

[
Vm−1(p,n+ 1)−

∑
j

qjVm−1(αj, n)

]
+ γS

[
Vm−1(p,n)−

∑
j

qjVm−1(αj, n− 1)

]

+ γS
∑
j

qj

[
Vm−1(αj, n− 1)− (1−αj)

∑
k

qkVm−1(αk, n− 2)−αjVm−1(p,n− 1)

]

+ γB
∑
j

qj

[
Vm−1(αj, n− 1)−min{Vm−1(αj, n− 1) +

αjγS
γB

cad, Vm−1(r,n− 1) +
γS + γB
γB

ctr}
]
.

From Conditions 5, 6 and 2 (with k = m− 1), we know that the right hand side of the above

equation is non-decreasing in n for n ≥ 2 and thus we can conclude that Condition 5 also holds

for k = m but when n ≥ 2. To establish the condition for the case of n = 1, we need to show

that Vm(p,1)−
∑

j qjVm(αj,0) ≥ 0 and Vm(p,2)−
∑

j qjVm(αj,1) ≥ Vm(p,1)−
∑

j qjVm(αj,0). To

establish the first inequality, using (EC.B.4) and the fact that λ+ γS + γB = 1, we can write

Vm(p,1)−
∑
j

qjVm(αj,0)

= cw +λ

[
Vm−1(p,2)−

∑
j

qjVm−1(αj,1)

]
+ γS

[
Vm−1(p,1)−

∑
j

qjVm−1(αj,0)

]
,

which is non-negative by Condition 5 (with k=m− 1).
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To establish the second inequality, we can write[
Vm(p,2)−

∑
j

qjVm(αj,1)

]
−

[
Vm(p,1)−

∑
j

qjVm(αj,0)

]
=

λ

{[
Vm−1(p,3)−

∑
j

qjV (αj,2)

]
−

[
Vm−1(p,2)−

∑
j

qjV (αj,1)

]}

+ γS

{[
Vm−1(p,2)−

∑
j

qjVm−1(αj,1)

]
−

[
Vm−1(p,1)−

∑
j

qjVm−1(αj,0)

]}

+ γS
∑
j

qj

[
Vm−1(αj,1)− (1−αj)

∑
k

qkVm−1(αk,0)−αjVm−1(p,1)

]

+ γB
∑
j

qj

[
Vm−1(αj,1)−min{Vm−1(αj,1) +

αjγS
γB

cad, Vm−1(r,1) +
γS + γB
γB

ctr}
]
≥

γS
∑
j

qj

[
Vm−1(αj,1)− (1−αj)

∑
k

qkVm−1(αk,0)−αjVm−1(p,1)

]

+ γB
∑
j

qj

[
Vm−1(αj,1)−min{Vm−1(αj,1) +

αjγS
γB

cad, Vm−1(r,1) +
γS + γB
γB

ctr}
]
≥

γS
∑
j

qjαjcad− γB
∑
j

qj
αjγS
γB

cad = 0,

where we used Conditions 5, 6 and 2 (with k=m− 1). Hence, Condition 5 also holds for k=m.

Proof of Condition 6: For n≥ 2, using (EC.B.2) and (EC.B.4) we have

Vm(αi, n)− (1−αi)
∑
j

qjVm(αj, n− 1)−αiVm(p,n) = (1−αi)cw

+λ

[
Vm−1(αi, n+ 1)− (1−αi)

∑
j

qjVm−1(αj, n)−αiVm−1(p,n+ 1)

]

+ γB

[
min{Vm−1(αi, n) +

αiγS
γB

cad, Vm−1(r,n) +
γS + γB
γB

ctr}−
∑
j

qjVm−1(αj, n− 1)

]

+ (1−αi)γS
∑
j

qj

[
Vm−1(αj, n− 1)− (1−αj)

∑
k

qkVm−1(αk, n− 2)−αjVm−1(p,n− 1)

]

+(1−αi)γB
∑
j

qj

[
Vm−1(αj, n− 1)−min{Vm−1(αj, n− 1) +

αjγS
γB

cad, Vm−1(r,n− 1) +
γS + γB
γB

ctr}
]
.

From Conditions 6, 1 and 2 (with k=m−1), we know that the right hand side of the above equation

is non-decreasing in n for n≥ 2 and thus we can conclude that the first part of Condition 6 also

holds for k=m but when n≥ 2. To complete the proof for Condition 6, it then remains to show that

Vm(αi,1)− (1− αi)
∑

j qjVm(αj,0)− αiVm(p,1) ≥ αicad and Vm(αi,2)− (1− αi)
∑

j qjVm(αj,1)−

αiVm(p,2)≥ Vm(αi,1)− (1−αi)
∑

j qjVm(αj,0)−αiVm(p,1).
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To establish the first inequality, first, using (EC.B.2) (with n= 1) we have

Vm(αi,1) = cw +λVm−1(αi,2) + (1−αi)γS
∑
j

qjVm−1(αj,0)

+αiγSVm−1(p,1) + γB min{Vm−1(αi,1) +
αiγS
γB

cad, Vm−1(r,1) +
γS + γB
γB

ctr},

and from (EC.B.1) we have

(1−αi)
∑
j

qjVm(αj,0) = (1−αi)Vm(0) = (1−αi)λ
∑
j

qjVm−1(αj,1)+(1−αi)(γS+γB)
∑
j

qjVm−1(αj,0).

Using (EC.B.4) (with n= 1) we can write

αiVm(p,1) = αicw +αiλVm−1(p,2) +αiγB
∑
j

qjVm−1(αj,0) +αiγSVm−1(p,1).

It then follows that

Vm(αi,1)− (1−αi)
∑
j

qjVm(αj,0)−αiVm(p,1) = (1−αi)cw

+λ

[
Vm−1(αi,2)− (1−αi)

∑
j

qjVm−1(αj,1)−αiVm−1(p,2)

]

+ γB

[
min{Vm−1(αi,1) +

αiγS
γB

cad, Vm−1(r,1) +
γS + γB
γB

ctr}−
∑
j

qjVm−1(αj,0)

]
.

Then, using Condition 6 and 1 (with k=m− 1), we have

Vm(αi,1)− (1−αi)
∑
j

qjVm(αj,0)−αiVm(p,1)≥ λαicad + γB �
γS + γB
γB

�αicad = αicad.

For the second inequality, we can write[
Vm(αi,2)− (1−αi)

∑
j

qjVm(αj,1)−αiVm(p,2)

]
−

[
Vm(αi,1)− (1−αi)

∑
j

qjVm(αj,0)−αiVm(p,1)

]
=

λ

{[
Vm−1(αi,3)− (1−αi)

∑
j

qjVm−1(αj,2)−αiVm−1(p,3)

]

−

[
Vm−1(αi,2)− (1−αi)

∑
j

qjVm−1(αj,1)−αiVm−1(p,2)

]}

+ γB

{[
min{Vm−1(αi,2) +

αiγS
γB

cad, Vm−1(r,2) +
γS + γB
γB

ctr}−
∑
j

qjVm−1(αj,1)

]

−

[
min{Vm−1(αi,1) +

αiγS
γB

cad, Vm−1(r,1) +
γS + γB
γB

ctr}−
∑
j

qjVm−1(αj,0)

]}
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+ (1−αi)γS
∑
j

qj

[
Vm−1(αj,1)− (1−αj)

∑
k

qkVm−1(αk,0)−αjVm−1(p,1)

]

+ (1−αi)γB
∑
j

qj

[
Vm−1(αj,1)−min{Vm−1(αj,1) +

αjγS
γB

cad, Vm−1(r,1) +
γS + γB
γB

ctr}
]
≥

+ (1−αi)γS
∑
j

qj

[
Vm−1(αj,1)− (1−αj)

∑
k

qkVm−1(αk,0)−αjVm−1(p,1)

]

+ (1−αi)γB
∑
j

qj

[
Vm−1(αj,1)−min{Vm−1(αj,1) +

αjγS
γB

cad, Vm−1(r,1) +
γS + γB
γB

ctr}
]
≥

(1−αi)

[
γS
∑
j

qjαjcad− γB
∑
j

qj
αjγS
γB

cad

]
= 0,

where we used Condition 6, 1 and 2 for k=m− 1. Thus Condition 6 for k=m follows.

Proof of Condition 7: For n≥ 2, we have

Vm(r,n)−
∑
j

qjVm(αj, n− 1) =

cw +λ

[
Vm−1(r,n+ 1)−

∑
j

qjVm−1(αj, n)

]

+ γB

[
Vm−1(r,n)−

∑
j

qjVm−1(αj, n− 1)

]

+ γS
∑
j

qj

[
Vm−1(αj, n− 1)− (1−αj)

∑
k

qkVm−1(αk, n− 2)−αjVm−1(p,n− 1)

]

+ γB
∑
j

qj

[
Vm−1(αj, n− 1)−min{Vm−1(αj, n− 1) +

αjγScad
γB

, Vm−1(r,n− 1) +
γS + γB
γB

ctr}
]
.

Then, using Condition 7, 6 and 2 (with k =m− 1), we can conclude that the right hand side

of the above equation is non-decreasing in n for n ≥ 2 and thus Vm(r,n)−
∑

j qjVm(αj, n− 1) is

also non-decreasing in n for n≥ 2. To complete the proof for Condition 7, we need to show that

Vm(r,1)−
∑

j qjVm(αj,0)≥ 0 and Vm(r,2)−
∑

j qjVm(αj,1)≥ Vm(r,1)−
∑

j qjVm(αj,0).

To establish the first inequality, first, using (EC.B.3) with n= 1, we can write

Vm(r,1) = cw +λVm−1(r,2) + γS
∑
j

qjVm−1(αj,0) + γBVm−1(r,1),

and using (EC.B.1), we can write∑
j

qjVm(αj,0) = Vm(0) = λ
∑
j

qjVm−1(αj,1) + (γS + γB)
∑
j

qjVm−1(αj,0),

where we used the fact that
∑

j qjVk(αj,0) = Vk(0),∀k≥ 0. Thus, we have

Vm(r,1)−
∑
j

qjVm(αj,0) = cw+λ

[
Vm−1(r,2)−

∑
j

qjVm−1(αj,1)

]
+γB

[
Vm−1(r,1)−

∑
j

qjVm−1(αj,0)

]
.
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From Condition 7 (with k=m− 1), we can then see that Vm(r,1)−
∑

j qjVm(αj,0)≥ 0.

To establish the second inequality, we can write[
Vm(r,2)−

∑
j

qjVm(αj,1)

]
-

[
Vm(r,1)−

∑
j

qjVm(αj,0)

]
=

λ

{[
Vm−1(r,3)−

∑
j

qjVm−1(αj,2)

]
−

[
Vm−1(r,2)−

∑
j

qjVm−1(αj,1)

]}

+ γB

{[
Vm−1(r,2)−

∑
j

qjVm−1(αj,1)

]
−

[
Vm−1(r,1)−

∑
j

qjVm−1(αj,0)

]}

+ γS
∑
j

qj

[
Vm−1(αj,1)− (1−αj)

∑
k

qkVm−1(αk,0)−αjVm−1(p,1)

]

+ γB
∑
j

qj

[
Vm−1(αj,1)−min{Vm−1(αj,1) +

αjγScad
γB

, Vm−1(r,1) +
γS + γB
γB

ctr}
]
≥

γS
∑
j

qj

[
Vm−1(αj,1)− (1−αj)

∑
k

qkVm−1(αk,0)−αjVm−1(p,1)

]

+ γB
∑
j

qj

[
Vm−1(αj,1)−min{Vm−1(αj,1) +

αjγScad
γB

, Vm−1(r,1) +
γS + γB
γB

ctr}
]
≥

γS
∑
j

qjαjcad− γB
∑
j

qj
αjγS
γB

cad = 0,

where we used Conditions 7, 6 and 2 (with k=m− 1). Thus Condition 7 for k=m follows.

Proof of Condition 8: First, we can write[
Vm(αi, n+ 1)−

∑
j

qjVm(αj, n)

]
−

[
Vm(αi, n)−

∑
j

qjVm(αj, n− 1)

]
=

{[Vm(αi, n+ 1)−Vm(r,n+ 1)]− [Vm(αi, n)−Vm(r,n)]}

+

{[
Vm(r,n+ 1)−

∑
j

qjVm(αj, n)

]
−

[
Vm(r,n)−

∑
j

qjVm(αj, n− 1)

]}
.

Then, using Conditions 4 and 7 (with k=m), which we have already established, we can conclude

that for all n≥ 1, Vm(αi, n+ 1)−
∑

j qjVm(αj, n)≥ Vm(αi, n)−
∑

j qjVm(αj, n− 1). It then remains

to show that Vm(αi,1)−
∑

j qjVm(αj,0)≥ αicad.
Using (EC.B.2) (with n= 1), we have

Vm(αi,1) = cw +λVm−1(αi,2) + (1−αi)γS
∑
j

qjVm−1(αi,0)

+αiγSVm−1(p,1) + γB min{Vm−1(αi,1) +
αiγS
γB

cad, Vm−1(r,1) +
γS + γB
γB

ctr},

and using (EC.B.1), we have∑
j

qjVm(αj,0) = Vm(0) = λ
∑
j

qjVm−1(αj,1) + (γS + γB)
∑
j

qjVm−1(αj,0),
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where we used the fact that
∑

j qjVk(αj,0) = Vk(0), ∀k≥ 0. Then, we have

Vm(αi,1)−
∑
j

qjVm(αj,0) = cw+λ

[
Vm−1(αi,2)−

∑
j

qjVm−1(αj,1)

]
+αiγS

[
Vm−1(p,1)−

∑
j

qjVm−1(αj,0)

]

+ γB

[
min{Vm−1(αi,1) +

αiγS
γB

cad, Vm−1(r,1) +
γS + γB
γB

ctr}−
∑
j

qjVm−1(αj,0)

]
.

Hence

Vm(αi,1)−
∑
j

qjVm(αj,0)≥ λαicad + 0 + γB �
αi(γS + γB)

γB
cad = λαicad + (γS + γB)αicad = αicad,

where we used Conditions 8, 5 and 1 for k=m− 1. Thus, Condition 8 for k=m follows.

Proof of Condition 9: Using (EC.B.2), we have, for n≥ 1

Vm(αi, n) = ncw +λVm−1(αi, n+ 1) + γS
∑
j

qjVm−1(αj, n− 1)+

αiγS

[
Vm−1(p,n)−

∑
j

qjVm−1(αj, n− 1)

]
+ γB min{Vm−1(αi, n) +

αiγScad
γB

, Vm−1(r,n) +
γS + γB
γB

ctr}.

The first and the third term are both invariant in i. The second term is non-decreasing in i using

Condition 9 (with k=m−1). The fourth term is non-decreasing in i because αi is non-decreasing in

i and Vm−1(p,n)−
∑

j qjVm−1(αj, n−1) is invariant in i and is non-negative according to Condition

5 (with k = m − 1). The last term is also non-decreasing in i from the fact that minimization

preserves monotonicity and that Condition 9 holds for k = m − 1. Thus, we can conclude that

Vm(αi, n) is non-decreasing in i for all n≥ 1. This completes the proof of the lemma. �

B.2. Main body of the proof of Theorem 2

Now, we choose the terminating costs so that V0(αi, n) = ncad for n ≥ 0 and αi ∈ Ω, V0(r,n) =

V0(p,n) = (n− 1)cad for n≥ 1. One can then easily check that all the conditions of Lemma EC.3

hold for k = 0. Then, repeated use of Lemma EC.3 implies that all the conditions of the lemma

hold for any integer m ≥ 1. We also know from Theorem 1 that there exists an optimal policy

for the long-run average cost problem with bias function h(·) satisfying the ACOEs (5.2) through

(5.5). Thus, we must have

h(αi, n)−h(r,n) = lim
m→∞

[Vm(αi, n)−Vm(r,n)],

for αi ∈Ω and n≥ 1. Then, because we know that all the conditions of Lemma EC.3 hold for any

m and in particular Condition 1, i.e., Vm(αi, n)−Vm(r,n) is a non-decreasing function of n, we can

conclude that h(αi, n)−h(r,n) is also non-decreasing in n for n≥ 1 and αi ∈Ω.
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Let N(αi) be as defined in the theorem. It is easy to see that for all n≥N(αi), we have

h(αi, n) +
αiγScad
γB

>h(r,n) +
γS + γB
γB

ctr,

i.e., it is optimal to call ahead for a bed at the time of triage. This completes the proof of Theorem

2. �

Appendix C: Proof of Theorem 3.

The proof follows along the lines of the proof of Theorem 2. First, note that we only need to prove

that h(αi, n)− h(r,n), or simply, h(αi, n), is non-decreasing in i for all n ≥ 1. Now, choose the

terminating costs so that V0(αi, n) = ncad for n≥ 0 and αi ∈Ω, V0(r,n) = V0(p,n) = (n− 1)cad for

n≥ 1. One can then easily check that the conditions of Lemma EC.3 hold for k= 0. Then, repeated

use of Lemma EC.3 implies that all the conditions of the lemma hold for any integer m≥ 1. We also

know from Theorem 1 that there exists an optimal policy for the long-run average cost problem

with bias function h(·) satisfying the ACOEs (5.2) through (5.5). Thus, we must have

h(αi, n)−h(r,n) = lim
m→∞

[Vm(αi, n)−Vm(r,n)]

for αi ∈ Ω and n ≥ 1. Then, because we know that the conditions of Lemma EC.3 hold for any

m and in particular Condition 9, i.e., Vm(αi, n)− Vm(r,n) is a non-decreasing function of αi, we

can conclude that h(αi, n)− h(r,n) is also non-decreasing in αi. This completes the proof of the

theorem. �

Appendix D: Proof of Theorem 4.

We only need to show that V (αi, n) + αiγS
γB

cad ≥ V (r,n) + γS+γB
γB

ctr if and only if n ≥
(ctr−αicad)(γS+γB)

αicw
. Subtracting (3.8) from (3.7) we get

V (αi, n)−V (r,n) =
αiγS

γS + γB

[
V (p,n)−

∑
j

qjV (αj, n− 1)

]
+ I{V (αi,n)+

αiγS
γB

cad≥V (r,n)+
γS+γB
γB

ctr}
ctr

+ I{V (αi,n)+
αiγS
γB

cad<V (r,n)+
γS+γB
γB

ctr}
γB

γS + γB

[
V (αi, n) +

αiγS
γB

cad−V (r,n)

]
.

Rearranging (3.9) we have

V (p,n)−
∑
j

qjV (αj, n− 1) =
ncw
γB

,

and then we can write

V (αi, n)−V (r,n) =
αiγSncw

γB(γS + γB)

+ I{V (αi,n)+
αiγS
γB

cad≥V (r,n)+
γS+γB
γB

ctr}
ctr

+ I{V (αi,n)+
αiγS
γB

cad<V (r,n)+
γS+γB
γB

ctr}
γB

γS + γB

[
V (αi, n) +

αiγS
γB

cad−V (r,n)

]
. (EC.D.1)
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Hence, if V (αi, n)+ αiγS
γB

cad ≥ V (r,n)+ γS+γB
γB

ctr, or, V (αi, n)−V (r,n)≥ γS+γB
γB

ctr− αiγS
γB

cad, then

we have

V (αi, n)−V (r,n) =
αiγSncw

γB(γS + γB)
+ ctr ≥

γS + γB
γB

ctr−
αiγS
γB

cad

=⇒ αiγSncw
γB(γS + γB)

≥ γS
γB
ctr−

αiγS
γB

cad

=⇒ n≥ (ctr−αicad)(γS + γB)

αicw
.

Now we are only left to show that if n≥ (ctr−αicad)(γS+γB)

αicw
, then V (αi, n) + αiγS

γB
cad ≥ V (r,n) +

γS+γB
γB

ctr. Suppose not, i.e., suppose we have V (αi, n) + αiγS
γB

cad < V (r,n) + γS+γB
γB

ctr, then using

(EC.D.1), we have

V (αi, n)−V (r,n) =
αiγSncw

γB(γS + γB)
+

γB
γS + γB

[
V (αi, n) +

αiγS
γB

cad−V (r,n)

]
≥ αiγScw
γB(γS + γB)

�
(ctr−αicad)(γS + γB)

αicw
+

γB
γS + γB

[
V (αi, n) +

αiγS
γB

cad−V (r,n)

]
=
γS(ctr−αicad)

γB
+

γB
γS + γB

[
V (αi, n) +

αiγS
γB

cad−V (r,n)

]
=

γB
γS + γB

[V (αi, n)−V (r,n)] +
γS(ctr−αicad)

γB
+

αiγS
γS + γB

cad

=
γB

γS + γB
[V (αi, n)−V (r,n)] +

γS
γB

[
ctr−

αiγS
γS + γB

cad

]
=⇒ γS

γS + γB
[V (αi, n)−V (r,n)]≥ γS

γB

[
ctr−

αiγS
γS + γB

cad

]
=⇒ V (αi, n)−V (r,n)≥ γS + γB

γB
ctr−

αiγS
γB

cad,

which is a contradiction. Hence our assumption that V (αi, n) + αiγS
γB

cad < V (r,n) + γS+γB
γB

ctr does

not hold. This completes the proof of the theorem. �

Appendix E: The Simulation Model

Currently, at the ED where our data came from, no early bed requests are made for the patients.

(This was also the case during 2012, the year our data were collected.) Therefore, we first developed

a simulation model that is meant to capture the system, as it was during the period the data

were collected, with no early bed requests, and validated it. Then, we developed a version of the

simulation model that allows the possibility of making early bed requests using either the policies

we propose or one of the benchmarks. In the rest of this section, we first describe the model for

the ED. Then, we explain how we validated the model. Finally, we describe how we incorporated

early bed requests. Note that the simulation models were built and run using the discrete-event

simulation software Arena version 15.
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E.1. Description of the Base Simulation Model

Each patient visiting the ED follows these main steps: the patient arrives, joins the queue for

triage, and goes through triage when it is his/her turn. After triage, the patient either is admitted

to the ED right away or waits in the waiting room until a bed for the patient becomes available.

Once the patient is admitted to the ED, s/he goes through two stages. The first stage is what

we refer to as the ED workup during which the patient is seen by the nurses and physicians as

many times as needed and any procedures (such as blood test, CT scan etc.) that are needed to

diagnose the problem are performed. At the end of this first stage, a disposition decision is made

for the patient and the second stage starts. This second stage either corresponds to discharge time

or boarding time for the patient. If the decision is to discharge the patient from the ED, the patient

discharge procedure is activated and at the completion of this procedure the patient vacates the

bed and leaves the ED. If the decision is to admit the patient to the hospital then the second stage

corresponds to the patient’s boarding time. Boarding time of a patient depends on the availability

of the hospital beds and the TPP time for the patient. Specifically, when the admit decision is

made if a hospital bed is available then the boarding time simply equals to the TPP time; however,

if there are no beds available, then the hospital bed request joins a queue and waits for a bed to

become available. (As patients are discharged from the hospital and beds become available, they

are allocated to the requests in this queue in a FCFS manner.) In this case, the boarding time

of a patient is equal to the waiting time in the queue plus the TPP time. Once the second stage

service is over the patient leaves the ED making the bed she occupied available for patients who are

waiting or will arrive in the future. Patients who are transferred to the hospital keep a single bed

occupied during their stay. Once their hospital stay is over, they leave and the bed they occupied

become available for admitted ED patients who are waiting for a hospital bed or future ED patients

who will be admitted to the hospital. We should note that modelling of boarding times (waiting

for a hospital bed availability plus an allocation delay) is based on the approach developed by Shi

et al. (2016). Unlike Shi et al. (2016), however, we consider only a single allocation delay, which

is experienced once a hospital bed is allocated to the admitted patient. Considering two types of

allocation delays, one prior to bed assignment and one followed by bed assignment, captures the

actual system in a more realistic way; however, for our purposes, assuming a single allocation delay

is a more reasonable choice since we do not have data that can be used to reliably estimate the

two delays separately and we use the mean allocation delay as one of the calibration parameters

for validating the simulation model. For our purposes, having a single allocation delay, which can

be seen as pre and post-allocation delays (as described in Shi et al. (2016)) put together, captures

the actual system realistically and helps us avoid adding unnecessary complexity to the simulation

model.
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Our initial analysis revealed that the arrival rates of the patients, their hospital admission proba-

bilities, their ED workup, boarding, and discharge times depended on day-of-the-week, time-of-day,

whether or not the patient is an adult or pediatric patient, the patient’s ESI level, and whether

the patient is eventually admitted to the hospital or discharged from the ED. (Obviously, whether

or not a patient is going to be eventually admitted is not an observable feature and is not known

when making decisions but the simulation model knows this for each patient when generating the

times the patient spends in different stages etc.) With 5 different ESI levels, two age levels (adult

vs. pediatric), and two different possible eventual disposition decisions (admit vs. discharge), we

put patients into one of 5× 2× 2 = 20 classes.

Patient Arrivals: In line with most prior work, we found that a non-homogeneous Poisson process

would be a good fit for arrival times to the ED. Specifically, we used the method developed in Brown

et al. (2005) to test the hypothesis that patient arrivals follow a non-homogeneous Poisson process.

More specifically, to ameliorate the effects of rounding errors in data collection, we added a uniform

noise to each data point and we divided the data into 672 subgroups based on hour of day, day of

week, and season of year, to ensure some level of stationarity in each subgroup. For each subgroup,

we performed a Kolmogorov-Smirnov (K-S) test and found that the null hypothesis was rejected

(at a significance level of 0.01) for only 25 out of 672 subgroups. Based on this statistical analysis, in

our simulation model, we generated arrivals for each class using an independent non-homogeneous

Poisson process. The arrival rates for each process are described as step functions of time with

each step corresponding to a specific one-hour window of every week and thus resulting in a total

of 24× 7 = 168 steps. However, note that patient arrival rate functions corresponding to certain

days were very similar to each other giving us no strong justification for using a different function

for each day. Therefore, in the simulation study, we used three different arrival rate functions with

one for Mondays only, another for Tuesday through Friday, and another for Saturday and Sunday.

Tables EC.7 through EC.14 in Appendix E.4 list the arrival rates estimated and assumed in the

simulation model for each patient class.

Triage, waiting room, and bed assignment: There are two triage nurses working at all times.

The main goal of triage is to determine how critical each patient’s condition is and assign an ESI

level to the patient. If an arriving patient finds both triage nurses busy, she joins the queue for

triage, which progresses in a first-come-first-served fashion. Unfortunately, our data did not contain

elements that would allow us to fit a probability distribution or estimate the mean for triage times

and therefore using common practice, we assumed triage times to have a triangular distribution

and we used the best estimates by practitioners for the parameters of the distribution. Specifically,

we assumed triangular distribution with a support from 5 minutes to 15 minutes and a peak at

10 minutes. (Because triage times are relatively much shorter than the times spent in the ED,
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Table EC.1 Patient Prioritization and Pod Assignment Rules During the Year 2012.

Age group Acuity class Priority Assigned pod (in order of pref. as capacity allows)
Adult ESI1 1 Trauma beds, Pod A, Pod B
Adult ESI2 2 Pod A, Pod B
Adult ESI3 (Acute) 3 Pod A, Pod B
Adult ESI3 (Non-acute) 4 Pod D, Pod A, Pod B
Adult ESI4 and ESI5 4 Pod D when open, otherwise, Pod A, Pod B

Pediatric ESI1 1 Ped. pod, Pod A, Pod B
Pediatric ESI2 2 Ped. pod, Pod A, Pod B
Pediatric ESI3 4 Ped. pod, Pod A, Pod B
Pediatric ESI4 and ESI5 4 Ped. pod when open, otherwise, Pod A, Pod B

Note: Roughly 50% of ESI3 patients are acute.

estimation errors, unless they are extremely off, are unlikely to alter the main conclusions.) After

triage, if there is a bed available for the patient, the patient is admitted to the ED right away.

If not, the patient starts waiting in the waiting room and continues to do so until a bed for the

patient becomes available.

Adult patients (patients who are 18 or older) are treated in one of the three pods, A, B, or D.

Pods A and B are open 24 hours 7 days a week while Pod D, which mostly functions as a fast-track,

opens 9 am every day and closes at 2 am the next day. Pediatric patients can be admitted to the

pediatric pod, Pod A, or Pod B depending on the time of day and bed availability in each pod.

Pediatric pod is open between the hours of 9 am and 2 am just like Pod D. There are 19 beds

in Pod A two of which are trauma beds, which are reserved for ESI1 patients only. There are

16 beds in Pod B, 15 beds in Pod D, and 9 beds in the pediatric pod. Note however that these

official numbers do not represent the actual capacities of each pod. For various reasons, the actual

cap on the number of patients in each pod can be slightly above or below these numbers. As to

which patients get priority over the others and which pod is preferred for each patient, the rules

stated in Table EC.1 are used. Note that within each priority level the ordering is according to

First-Come-First-Served.

The first stage in the ED (ED workup): We did not explicitly model the interactions among

the patients, nurses, and physicians mainly because we did not have any data that would help

us formalize such interactions and capture them in a realistic manner within a simulation model.

Once a patient is in the ED, the model simply keeps the patient in an ED bed for some random

amount of time. Clearly, in reality, how long the patient stays in the bed would depend on staffing

levels, i.e., how many nurses and physicians are working during the patient’s sojourn in the ED. We

capture this effect by allowing the ED workup time to depend on the time-of-day (based on which

staffing levels change) along with the patient’s ESI level and whether she is an adult or pediatric

patient. Tables EC.3 and EC.4 in Appendix E.4 lists the probability distributions that we found

to be the best fit to the ED workup time data using the Kolmogorov-Smirnov test.
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The second stage in the ED (discharge process or boarding): At the end of the first

stage in the ED, a disposition decision for the patient is made. If the decision is to discharge the

patient from the ED, the discharge process starts. During this process the patient continues to

keep the ED bed occupied. At the end of the discharge process the patient leaves the ED (and the

simulation as well) and the ED bed becomes available for patients who are waiting for admission

to the ED or future ED patients. The discharge process time depends on the time-of-day, the

patient’s ESI level, and whether the patient is an adult or pediatric patient. Tables EC.5 and EC.6

in Appendix E.4 list the probability distributions that we found to be the best fit to the data using

the Kolmogorov-Smirnov test.

If the disposition decision is to admit the patient to the hospital, the ED requests a bed from

the hospital. If there is a bed available, TPP is initiated right away. Otherwise, the request joins a

queue which proceeds in a FCFC manner. Thus, in the case of hospital admission, the second stage

service corresponds to the patient boarding time, which is equal to any queueing time for a hospital

bed plus the TPP time. Unfortunately, we did not have data that would help us estimate the TPP

times. Therefore, following Shi et al. (2016), we assumed that TPP has lognormal distribution with

mean 3.3 hours and coefficient of variation equal to 0.6. However, we truncated the distribution at

12 hours. We made minor adjustments to these parameters when validating our simulation model

as discussed in E.2. As soon as the admitted patient is transferred to the hospital, the patient’s

hospital length of stay is initiated and the ED bed becomes available for other patients.

Hospital stay: The hospital is modeled as a multi-server queue with homogeneous servers that

correspond to hospital beds and arrivals coming from ED admissions only. This is a simplification

of the actual system since ED is in fact not the only source of arrivals for the hospital, and hospital

beds are in fact not homogeneous because patients can be accepted to different specialty wards

depending on their conditions. However, given our focus on the ED, not the hospital, and lack

of data needed for a detailed simulation model that can be validated, this modeling approach

adequately captures the impact of limited hospital bed availability on ED boarding times.

As soon as a patient is transferred to a hospital bed, the patient’s hospital length-of-stay (hLOS)

starts. Once the patient’s hLOS is over, the patient is immediately discharged from the hospital

(and leaves the simulation) and the hospital bed becomes available for new admits. In modeling

hLOS, we used the two-time scale approach used by Shi et al. (2016). Specifically, we set hLOS

time to be equal to hLOS-day plus hospital discharge time, where hLOS-day is equal to the number

of nights the patient stays in the hospital and hospital discharge time is equal to the time between

the midnight of the patient’s discharge day and discharge time of the patient. Note that a same-day

discharge patient would have hLOS-day = 0.
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Because we did not have the data to estimate hLOS-day and hospital discharge time, we used the

estimates provided by Shi et al. (2016) (with some slight adjustments). Specifically, we assumed

that hLOS time depends on whether the patient was admitted to the hospital in the morning or

afternoon. Adopting the names used by Shi et al. (2016) and referring to the morning and afternoon

patients as ED-AM patients and ED-PM patients, respectively, we assumed that hLOS-day for

both ED-AM and ED-PM patients have lognormal distributions with parameters estimated using

Table 11 of Shi et al. (2021a). We used the period-1 data because period-2 data correspond to a

time period when the hospital the data came from was implementing an early-discharge policy,

and we made slight adjustments by enforcing the hLOS-day for ED-PM patients to be at least 1

day and for all patients to be at most 21 days. As a result of this analysis, in our simulations, we

assumed that 11.29 percent of the ED-AM patients have hLOS-day = 0 and the remaining ED-AM

patients have hLOS-day = min(21, dXe) where X has lognormal distribution with mean 3.86 and

standard deviation 3.93. For ED-PM patients, we assumed that hLOS-day = min(21, dY e) where

Y has lognormal distribution with mean 4.51 and standard deviation 4.2.

For hospital discharge time distribution (the time at which the patient is discharged on the

discharge day), we used the period-1 empirical distribution given in Table 1 of Shi et al. (2021a)

with a slight change for patients who are discharged on the same day as their admission. Specifically,

for patients whose hospital length-of-stay is at least 1 day, we used the empirical distribution as

it is. However, for patients who are discharged on the day of their admission (who can only be

ED-AM patients), we assumed that they can only be discharged in the afternoon and used the

empirical distribution conditional on the discharge time being in the afternoon. See Table EC.2 for

precise specifications of these distributions.

E.2. Model Validation

In order to reach credible conclusions using the simulation model, it is essential that the model is

validated. In particular, the simulation model should be producing results that are in line with the

data especially for the performance measures based on which our conclusions are formed. In our

analysis, we will be primarily using mean ED length-of-stay and the mean number of daily false

bed requests and therefore when validating the model, we concentrated on the mean length of stay

in the ED over the course of a day. (We cannot use mean number of daily false bed requests for

validation because in the current system, no early bed requests are made.)

When validating the simulation model, we picked several parameters, whose values might change

from time to time or whose values cannot be determined precisely, as calibration parameters. These

were mostly parameters related to the ED and the hospital bed capacity and their choices as

calibration parameters were justified due to the following facts: First, in practice, the ED was not
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Table EC.2 Probability Distributions for Discharge Times.

discharge time patients with hLOS= 0 patients with hLOS≥ 1
0-1 0 0.0015
1-2 0 0.0015
2-3 0 0.0011
3-4 0 0.0009
4-5 0 0.0010
5-6 0 0.0011
6-7 0 0.0015
7-8 0 0.0007
8-9 0 0.0016
9-10 0 0.0132
10-11 0 0.0369
11-12 0 0.0655
12-13 0.1119 0.0977
13-14 0.2221 0.1939
14-15 0.2948 0.2574
15-16 0.1209 0.1056
16-17 0.0696 0.0608
17-18 0.0511 0.0446
18-19 0.0421 0.0368
19-20 0.0371 0.0324
20-21 0.0292 0.0255
21-22 0.0121 0.0106
22-23 0.0054 0.0047
23-24 0.0037 0.0032

operating strictly according to the bed capacities as described in Section E.1. Depending on factors

that are impossible to formalize and capture in a simulation model, the capacities in effect stayed

below or went above the numbers we reported in Section E.1. Second, even though Pod D was

officially open from 9 am to 2 am, in practice the pod typically avoided admitting new patients

close to 2 am and appeared to admit very few patients during the first hours of its operation

everyday. Third, we did not have data that we could use to directly estimate the mean TPP time.

Finally, the true hospital bed capacity for patients who are admitted by the ED depends on many

other factors including scheduled surgeries and hospital transfers, which we had to leave out of the

simulation model, but also time-of-day as well as day-of-week.

As a result of a series of experiments with different sets of choices for the parameters described

above, we were able to validate our simulation model with the following choices: the numbers of

beds in Pods A and D respectively were changed from 19 to 12 and from 15 to 17 and the operating

hours of Pod D was changed so that it was open from 11 am until 11 pm everyday. The mean TPP

time was set to 3.3 hours, and for the hospital bed capacity, we used a schedule where there were

310 beds from 0 am to 10 am and 350 beds for the rest of the day.

Figure EC.1 provides plots of average first stage time (ED workup time), average second stage

time (either discharge or boarding time), and average length-of-stay computed over the course of
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Figure EC.1 Average Length-of-Stay, and First and Second Stage Time Plotted Over the Course of a Day Using

UNC ED Data and Simulation Output.

a day using the ED data as well as the simulation output. The simulation results are based on a

simulation of length 20 years where the first year data were truncated due to initialization bias.

The averages are computed over 24 one-hour time intervals starting from 12:00 am - 12:59 am,

which corresponds to time interval 0 in the x-axis, to 11:00 pm - 11:59 pm, which corresponds

to time interval 23. The average length-of-stay for a given one-hour period was calculated using

length-of-stay times of all patients who arrived at the ED during that time period. The average

first stage time for a given one-hour period was calculated using first stage times of all patients

whose ED bed assignment was made during that time period. Finally, the average second stage

time was calculated using second stage times of all patients for whom disposition decision is made

during that time period.

We can see from the figure that the simulation output data provides a good fit to the ED data.

In addition, our paired t-test on the hypothesis that the overall length-of-stay from the simulation

is the same as the one we obtain from the ED revealed that the hypothesis fails to be rejected at

a significance level of 0.05. These suggest that it would be reasonable to use our simulation model
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as a representation of the ED at least to the extent that the primary focus remains on the average

length-of-stay.

E.3. Incorporating BeRT in the Simulation Model

The underlying structure of the simulation model we use to test the performances of policies we

propose for making early bed request decisions is essentially the same as the base model described

in Section E.1. However, we need to describe how exactly we model bed requests at triage and how

we capture the operational impact of the practice in the simulation model.

We assume that the ED uses APT as described in Section 4 and for every patient, at the time

of triage, the hospital admission probability for the patient is calculated. In the simulation model,

the admission probability for a random patient is modeled as an independent random variable with

a probability distribution that depends on the ESI level and age category (adult or pediatric) of

the patient, and is estimated using the ED data. These estimated empirical distributions are given

in Table EC.15. If the hospital admission probability for the patient is higher than the threshold

then a request for a hospital bed is placed for the patient. The threshold level depends on which

policy is in place. If CTT is used, then the threshold is set to the right-hand side of (5.9) or (5.10)

depending on whether all beds are full or not. If FT is used, the threshold is the policy parameter

itself and is set to whatever value the ED and the hospital deemed to be acceptable.

If a decision is made to request a hospital bed at triage, then unlike the case in the base simulation

model, at the same time as the patient’s start of the ED workup, the bed request is placed. If

a hospital bed is available, TPP is initiated; if no beds are available, the request joins a queue.

Either way, while TPP is in progress or the request is in a queue, the ED workup for the patient

progresses in parallel. If at the completion of the patient’s ED workup, the decision is to admit

the patient, the patient is either transferred to the main hospital right away, which happens if the

TPP for the patient is already complete, or waits for it to complete and then is transferred. If the

patient is not admitted to the hospital, then the patient vacates the bed after the discharge process

is complete. ED workup times, discharge times, TPP times, and hospital lengths-of-stay are the

same as estimated for the base model.

E.4. Estimating Distributions and Parameters for the Simulation Study

As we explained in Section 4, we used data collected during the year 2012. The analysis of these

data resulted in the estimates we report in this section. For the fitted distributions, we report the

p-value for the Kolmogorov-Smirnov test as well as the mean squared error (MSE). Note that a

large value for the p-value indicates a good fit and in cases where we were not able to identify a

distribution with a large p-value we picked one with a small MSE.

In what follows, we use the following shortcuts to refer to various probability distributions:
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WEIB(β, α): Weibull distribution with scale parameter β and shape parameter α.

ERLA(µ, k): Erlang distribution with k phases and mean phase time µ.

BETA(α1, α2): Beta distribution with shape parameters α1 and α2.

GAMM(β, α): Gamma distribution with scale parameter β and shape parameter α.

NORM(µ,σ): Normal distribution with mean µ and standard deviation σ.

EXPO(µ): Exponential distribution with mean µ.

MIXEDLOGN(p,µ1, σ1,1 − p,µ2, σ2): A mixed distribution that is lognormal with shape and

scale parameters respectively µ1 and σ1 with probability p and lognormal with shape and scale

parameters respectively µ2 and σ2 with probability 1− p.

Tables EC.3 and EC.4 below present the probability distributions fitted for the ED workup

time respectively for adult and pediatric patients. The probability distributions depend on the ESI

level and time-of-day. In cases where time-of-day does not make a significant difference, a single

probability distribution is specified.

Table EC.3 Probability Distributions Fitted for ED Workup Times for Adult Patients.

ESI Level Time-of-Day Probability Distribution p-value MSE
ESI1 12:00am - 11:59pm 10+WEIB(88.9,.903) > .15 0.00024

ESI2 12:00am - 4:59am MIXEDLOGN(.97,5.33,.842,.03,2.84,.344) .381 .03235
ESI2 5:00am - 2:00pm MIXEDLOGN(.96,5.32,.674,.04,3.27,.495) .5885 .01729
ESI2 2:00pm - 11:59pm MIXEDLOGN(.96,5.39,.678,.04,3.39,.574) .04135 .02434

ESI3 6:00am - 5:59pm MIXEDLOGN(.88,5.48,.527,.12,4.46,.773) .04613 .01065
ESI3 6:00pm - 5:59am MIXEDLOGN(.95,5.37,.592,.05,3.81,.665) .09353 .01109

ESI4 3:00am - 10:59am 10+GAMM(110,1.22) .0102 .00138
ESI4 11:00am - 6:59pm 10+GAMM(93.8,1.24) < .01 .00107
ESI4 7:00pm - 2:59am 10+GAMM(106,1.28) < .01 .00216

ESI5 12:00am - 4:59am 11+WEIB(88.9,.885) > .15 .00487
ESI5 5:00am - 11:59pm 10+EXPO(60) .122 .00139
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Table EC.4 Probability Distributions Fitted for ED Workup Times for Pediatric

Patients.

ESI Level Time-of-Day Probability Distribution p-value MSE
ESI1 12:00am - 11:59pm 10+EXPO(77.9) > .15 .00653

ESI2 2:00am - 8:59am 15+EXPO(212) > .15 .00198
ESI2 9:00am - 1:59pm 10+717 × BETA(1.22,2.14) > .15 .00392
ESI2 2:00pm - 1:59am 10+GAMM(163,1.23) .0598 .00381

ESI3 4:00am - 5:59pm 10+GAMM(87.5,2.16) > .15 .00036
ESI3 6:00pm - 3:59am 10+ERLA(81.6,2) .112 .00078

ESI4 12:00am - 11:59pm 10+ERLA(55.4,2) > .15 .00026

ESI5 12:00am - 11:59pm 11+ERLA(36.1,2) > .15 .00127

Tables EC.5 and EC.6 below present the probability distributions fitted respectively for the ED

discharge time of adult patients and pediatric patients, respectively. The probability distributions

depend on the ESI level and time-of-day. In cases where time-of-day does not make a significant

difference, a single probability distribution is specified.

Table EC.5 Probability Distributions Fitted for Discharge Times for Adult Patients.

ESI Level Time-of-Day Probability Distribution p-value MSE
ESI1 and ESI2 3:00am - 7:59am 5+939BETA(.167,2) < .01 .001449
ESI1 and ESI2 8:00am - 2:59am 5+WEIB(43.54,.721) < .01 .008345

ESI3 5:00am - 10:59am 5+WEIB(34.3,.748) < .01 .008397
ESI3 11:00am - 4:59am 5+WEIB(27.1,.755) < .01 .004829

ESI4 2:00am - 8:59am 5+GAMM(39.4,.637) < .01 .008525
ESI4 9:00am - 1:59am 5+EXPO(19.2) < .01 .00148

ESI5 2:00am - 8:59am 5+WEIB(19.9,.789) .0761 .003894
ESI5 9:00am - 1:59am 5+EXPO(14.4) > .15 .000847

Table EC.6 Probability Distributions Fitted for Discharge Times for Pediatric Patients.

ESI Level Time-of-Day Probability Distribution p-value MSE
ESI1 and ESI2 9:00am - 1:59pm 5+WEIB(37.1,.7) > .15 .011996
ESI1 and ESI2 2:00pm - 7:59pm 5+EXPO(27.3) .0588 .017779
ESI1 and ESI2 8:00pm - 8:59am 5+ERLA(33.7,1) < .01 .018725

ESI3 4:00am - 9:59am 5+722 × BETA(.147,3.69) < .01 .006446
ESI3 10:00am - 3:59am 5+EXPO(19.9) < .01 .003133

ESI4 and ESI5 5:00am - 11:59am 5+EXPO(20.1) > .15 .000463
ESI4 and ESI5 12:00pm - 4:59am 5+EXPO(17.5) < .01 .001218
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Tables EC.7 through EC.14 list the arrival rates we estimated and used in our simulation analysis.

Note that in all these tables, Sun is for Sunday, Mon is for Monday, Tue is for Tuesday, Wed is for

Wednesday, Thur is for Thursday, Fri is for Friday, and Sat is for Saturday. One-hour time slots

are represented by integers from 0 through 23 with number 0 corresponding to the first time slot

of the day from 12:00 am to 12:59 am, number 1 corresponding to the second time slot of the day

from 1:00 am to 1:59 am, and the numbering following this pattern until number 23 corresponding

to the last time slot that lasts from 11:00 pm to 11:59 pm.
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Table EC.7 Expected Number of Arrivals by Hour of Day on Weekdays

for Adult Patients Who Are Eventually Admitted to the Hospital.

Hour of Day (Mon) ESI1 ESI2 ESI3 ESI4 ESI5
0 0.0566 0.2264 0.7358 0.0189 0
1 0.0377 0.1509 0.6038 0.0566 0
2 0.0755 0.2453 0.566 0.0189 0
3 0.0755 0.283 0.6038 0 0
4 0.0189 0.2642 0.5094 0 0
5 0.0189 0.2642 0.4717 0.0189 0
6 0 0.3208 0.4906 0 0
7 0.0377 0.3396 0.6792 0.0377 0
8 0.0189 0.566 0.7358 0.0566 0
9 0.0377 0.717 1.4717 0.0755 0
10 0.0377 0.9623 2.2453 0.0566 0.0189
11 0.0755 1.4528 2.3585 0.0755 0
12 0.1698 1.0943 2.3396 0.0189 0
13 0.0189 0.8302 1.8113 0.0377 0
14 0.0566 1.3208 2.4717 0 0
15 0.1698 1.0377 2.283 0.0755 0
16 0.1132 1.1509 1.8679 0.0566 0
17 0.0189 1.3208 2.2453 0.0377 0
18 0.0377 0.8868 1.5849 0.0189 0
19 0.1321 0.8491 1.8491 0.1321 0.0189
20 0.0943 0.6792 1.434 0.0377 0
21 0.0755 0.5849 1.283 0.0566 0
22 0.0943 0.6792 1.1321 0.0377 0
23 0.1132 0.3208 0.9245 0.0189 0

Hour of Day (Tue - Fri) ESI1 ESI2 ESI3 ESI4 ESI5
0 0.0481 0.3942 0.6346 0.024 0
1 0.0625 0.2019 0.5433 0.0096 0
2 0.0385 0.2981 0.4615 0.0192 0
3 0.0433 0.1538 0.4471 0.0048 0
4 0.0337 0.226 0.4567 0.0048 0
5 0.0192 0.1442 0.3942 0.0096 0
6 0.0144 0.1971 0.5192 0.0144 0
7 0.0385 0.1971 0.5769 0.0385 0.0048
8 0.0577 0.3798 0.9327 0.0625 0
9 0.0673 0.4952 1.4327 0.0385 0.0048
10 0.0577 0.7115 1.8173 0.0577 0
11 0.0962 0.976 2.1827 0.0673 0
12 0.1154 0.8894 2.2115 0.0288 0.0048
13 0.0769 1.024 2.0865 0.0529 0
14 0.1346 1.1058 2.0144 0.0529 0.0048
15 0.1202 1.2163 2.3029 0.0433 0.0048
16 0.0817 1.024 2.0913 0.0385 0.0048
17 0.0769 0.9327 2.1538 0.0481 0
18 0.101 0.851 1.649 0.0577 0
19 0.0865 0.8606 1.5962 0.0577 0
20 0.0962 0.5721 1.4183 0.0385 0
21 0.0673 0.7212 1.226 0.024 0
22 0.0433 0.5721 1.1154 0.0192 0
23 0.0577 0.524 0.9279 0.0096 0
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Table EC.8 Expected Number of Arrivals by Hour of Day on Weekends for

Adult Patients Who Are Eventually Admitted to the Hospital.

Hour of Day (Sat & Sun) ESI1 ESI2 ESI3 ESI4 ESI5
0 0.0381 0.4 0.6286 0.0286 0
1 0.0571 0.3714 0.6 0.0381 0
2 0.0762 0.2857 0.5238 0.019 0
3 0.0381 0.2857 0.3524 0.019 0
4 0.0286 0.2095 0.5429 0 0
5 0.0667 0.1714 0.4286 0 0
6 0.0476 0.2476 0.5333 0.0095 0
7 0.0286 0.2571 0.7143 0.0476 0
8 0.0667 0.3333 0.9619 0.019 0
9 0.0286 0.5905 1.2381 0.1238 0
10 0.0571 0.619 1.5238 0.1333 0
11 0.0476 0.5048 1.4762 0.0857 0
12 0.0381 0.7238 1.5524 0.0381 0.0095
13 0.0286 0.6952 1.7333 0.0571 0
14 0.0762 0.6095 1.781 0.0381 0
15 0.0952 0.6476 1.9238 0.0667 0.0095
16 0.0952 0.6667 1.9619 0.0381 0
17 0.0571 0.5714 1.781 0.0095 0
18 0.019 0.7714 1.5524 0.0095 0
19 0.0762 0.6286 1.3905 0.0286 0
20 0.0476 0.7619 1.1714 0.0381 0
21 0.0667 0.4857 1.181 0.0952 0
22 0.0571 0.5619 1 0.0095 0
23 0.0667 0.5238 0.819 0.0095 0
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Table EC.9 Expected Number of Arrivals by Hour of Day on Weekdays

for Adult Patients Who Are Eventually Discharged from the ED.

Hour of Day (Mon) ESI1 ESI2 ESI3 ESI4 ESI5
0 0 0.1132 1.434 0.6415 0.0943
1 0 0.2075 1.0755 0.4717 0.0377
2 0 0.0755 0.7547 0.4151 0.0377
3 0 0.0755 0.7547 0.3208 0.0377
4 0 0 0.6415 0.3208 0.0189
5 0.0189 0.0566 0.8113 0.3585 0.0189
6 0 0.0755 1.0755 0.566 0.0943
7 0 0.0943 1.3396 1.1132 0.1698
8 0 0.1509 2.7925 1.6038 0.434
9 0.0189 0.2075 3.8868 2.4717 0.4528
10 0.0189 0.3774 4.6792 2.7547 0.8679
11 0 0.3585 4.6415 2.3208 0.6792
12 0 0.3774 4.9245 2.6981 0.3396
13 0.0189 0.4528 4.566 2 0.3396
14 0.0189 0.3208 3.9434 1.8868 0.3585
15 0.0189 0.4528 3.3396 1.9623 0.3585
16 0 0.3774 3.4717 1.6792 0.2642
17 0.0189 0.3396 3.6604 1.6792 0.2075
18 0.0189 0.3208 2.9245 1.6415 0.283
19 0 0.6604 3.2642 1.4151 0.1132
20 0.0189 0.283 2.7358 1.566 0.1509
21 0 0.2075 2.283 1.2264 0.1321
22 0 0.283 1.9623 0.9811 0.0566
23 0 0.2075 1.7358 0.8868 0.0566

Hour of Day (Tue - Fri) ESI1 ESI2 ESI3 ESI4 ESI5
0 0 0.1442 1.2548 0.5577 0.0865
1 0.0048 0.1154 1.0577 0.5096 0.0962
2 0.0096 0.1058 0.9087 0.4663 0.0721
3 0.0048 0.1106 0.8269 0.3029 0.0673
4 0.0048 0.0577 0.6731 0.2692 0.0288
5 0.0048 0.0625 0.7356 0.3221 0.0577
6 0 0.0721 0.8462 0.4183 0.0913
7 0.0048 0.0865 1.2981 0.7837 0.1971
8 0.0192 0.2067 2.1971 1.4231 0.375
9 0.0144 0.1779 3.3702 2.3317 0.5769
10 0.0144 0.226 3.8462 2.2788 0.4808
11 0.0144 0.3413 3.8029 2.0769 0.5769
12 0.0048 0.3173 3.8846 1.9519 0.4471
13 0.0048 0.3846 3.6635 1.7067 0.3846
14 0.0144 0.3413 3.5288 1.6346 0.2933
15 0.0288 0.4087 3.4808 1.4615 0.2644
16 0.0096 0.3798 3.3077 1.6779 0.2788
17 0.024 0.3702 3.0865 1.5577 0.2837
18 0 0.3125 3.0865 1.5865 0.2115
19 0.0144 0.2885 3.1154 1.7356 0.25
20 0.0048 0.2981 2.7981 1.1923 0.1683
21 0.0048 0.3654 2.6635 1.2115 0.1683
22 0 0.2692 2 0.899 0.1875
23 0.0096 0.274 1.6875 0.7933 0.0769
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Table EC.10 Expected Number of Arrivals by Hour of Day on Weekends

for Adult Patients Who Are Eventually Discharged from the ED.

Hour of Day (Sat & Sun) ESI1 ESI2 ESI3 ESI4 ESI5
0 0.0095 0.2571 1.7238 0.7714 0.0762
1 0 0.181 1.4286 0.6381 0.0571
2 0 0.1714 1.1619 0.7619 0.0381
3 0 0.1619 1.1619 0.7333 0.0571
4 0 0.1048 0.8762 0.4667 0.0762
5 0 0.1143 0.9143 0.3619 0.0286
6 0 0.0952 0.9143 0.4952 0.0286
7 0 0.0667 1.2286 0.6286 0.1048
8 0 0.1048 1.8286 1.3524 0.2571
9 0.019 0.1714 2.1238 2.1048 0.3619
10 0 0.1619 2.8476 2.3048 0.3429
11 0 0.1619 3.2381 2.419 0.3619
12 0 0.2095 3.3238 2.2857 0.3143
13 0.019 0.2762 3.5333 2.2857 0.3619
14 0 0.3048 3.219 1.981 0.4
15 0 0.2571 3.2286 1.981 0.3429
16 0 0.2667 3.1714 1.7905 0.3143
17 0.0286 0.3238 3.3714 1.5619 0.2381
18 0.0286 0.3143 2.7905 1.619 0.2286
19 0 0.3714 2.7524 1.7619 0.219
20 0 0.2762 2.6476 1.419 0.2476
21 0.0095 0.3143 2.6571 1.4095 0.181
22 0.0095 0.2857 2.0571 1.0762 0.181
23 0 0.1619 1.9333 0.8857 0.0857
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Table EC.11 Expected Number of Arrivals by Hour of Day on Weekdays

for Pediatric Patients Who Are Eventually Admitted to the Main Hospital.

Hour of Day (Mon) ESI1 ESI2 ESI3 ESI4 ESI5
0 0 0.0566 0.1321 0 0.0189
1 0 0.0566 0.0943 0 0
2 0.0189 0.0189 0.0755 0 0
3 0 0.0189 0.0566 0 0
4 0 0.0189 0.0377 0 0
5 0 0.0189 0.0377 0.0377 0
6 0 0.0189 0.0189 0.0189 0
7 0 0.0189 0.0377 0 0
8 0.0189 0 0.1509 0 0.0189
9 0 0.0943 0.0566 0 0
10 0 0.0943 0.1509 0 0
11 0.0189 0.1698 0.2453 0.0189 0
12 0.0189 0.2264 0.2075 0.0189 0
13 0.0189 0.1887 0.2453 0.0189 0
14 0 0.1321 0.1887 0.0189 0
15 0.0189 0.1132 0.1887 0 0
16 0.0189 0.2075 0.2264 0 0
17 0 0.1321 0.2453 0.0189 0
18 0 0.2453 0.2642 0.0566 0
19 0 0.1132 0.1887 0.0189 0
20 0.0189 0.1698 0.3396 0.0566 0
21 0 0.1887 0.3208 0 0
22 0 0.0566 0.1509 0.0189 0
23 0 0.0377 0.0377 0 0

Hour of Day (Tue - Fri) ESI1 ESI2 ESI3 ESI4 ESI5
0 0 0.0865 0.0962 0.0048 0
1 0.0048 0.0577 0.0817 0 0
2 0 0.0144 0.0673 0.0096 0
3 0 0.0673 0.0529 0.0096 0
4 0.0048 0.024 0.0433 0.0048 0
5 0.0048 0.0288 0.0288 0.0048 0
6 0.0048 0.0192 0.0288 0 0
7 0.0096 0.0433 0.0337 0.0048 0
8 0.0048 0.0288 0.0577 0.0144 0
9 0.0144 0.0481 0.1106 0.024 0
10 0.0144 0.0817 0.1442 0.0048 0
11 0.0192 0.0865 0.2404 0.0048 0
12 0 0.1346 0.1827 0.0144 0.0048
13 0.0048 0.0865 0.1683 0.0144 0
14 0 0.1202 0.1827 0.0096 0
15 0 0.1875 0.2067 0.0048 0.0048
16 0.0144 0.1635 0.1875 0 0
17 0.0144 0.1875 0.2837 0.024 0
18 0.0288 0.1635 0.2692 0.0048 0
19 0.0144 0.1635 0.2212 0.0385 0
20 0.0288 0.1298 0.2019 0.024 0
21 0.0096 0.1202 0.1346 0.0288 0
22 0.0096 0.1538 0.1635 0.0144 0
23 0 0.0913 0.2067 0.0096 0
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Table EC.12 Expected Number of Arrivals by Hour of Day on Weekends

for Pediatric Patients Who Are Eventually Admitted to the Hospital.

Hour of Day (Sat & Sun) ESI1 ESI2 ESI3 ESI4 ESI5
0 0.0095 0.0857 0.1524 0.0286 0
1 0 0.0857 0.0667 0.0095 0
2 0 0.0571 0.0667 0.0095 0
3 0 0.0857 0.0286 0 0
4 0 0.019 0.0476 0.0095 0
5 0 0.0095 0.019 0 0
6 0 0.019 0.0095 0 0
7 0 0.0286 0.019 0 0
8 0 0.019 0.0286 0 0
9 0.0095 0.0571 0.1048 0.0286 0
10 0.019 0.0571 0.0476 0.019 0
11 0 0.1619 0.2286 0 0
12 0.0095 0.0952 0.2286 0.0286 0
13 0 0.0857 0.1619 0.019 0
14 0.019 0.1143 0.1524 0.0286 0
15 0.019 0.1048 0.2476 0.0381 0
16 0 0.0857 0.2286 0.0095 0
17 0 0.1143 0.1619 0.0095 0
18 0 0.1048 0.1714 0.0286 0
19 0.0286 0.1048 0.1905 0.0286 0
20 0 0.0762 0.1905 0.0095 0
21 0 0.0857 0.1429 0.0286 0
22 0 0.1524 0.1238 0.0095 0
23 0.019 0.0762 0.1238 0.0095 0
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Table EC.13 Expected Number of Arrivals by Hour of Day on Weekdays

for Pediatric Patients Who Are Eventually Discharged From the ED.

Hour of Day (Mon) ESI1 ESI2 ESI3 ESI4 ESI5
0 0 0.0755 0.2642 0.5094 0.0189
1 0 0.0377 0.3585 0.2642 0.0189
2 0 0.0377 0.1321 0.1321 0.0189
3 0 0 0.2075 0.2075 0.0189
4 0 0 0.0943 0.1887 0
5 0 0 0.1321 0.0943 0
6 0 0.0189 0.0943 0.1132 0.0189
7 0 0.0377 0.2264 0.2075 0.0943
8 0 0 0.4151 0.2642 0.0377
9 0 0.0566 0.2453 0.434 0.1132
10 0 0.0377 0.5283 0.566 0.1132
11 0 0.0755 0.6038 0.6226 0.0943
12 0 0.0189 0.5094 0.5849 0.2075
13 0 0.1132 0.6981 0.4151 0.1132
14 0.0189 0.0755 0.5849 0.5094 0.1321
15 0 0.1698 0.5094 0.6415 0.0943
16 0 0.1132 0.7736 0.6792 0.0566
17 0 0.1509 1.0377 0.8679 0.1132
18 0 0.2453 0.9623 1.0566 0.2642
19 0 0.1509 0.6792 0.9434 0.0755
20 0 0.1321 0.8868 1.1132 0.2642
21 0 0.1132 0.6604 0.9623 0.0943
22 0 0.0943 0.5472 0.7547 0.1321
23 0 0.0377 0.3208 0.5094 0.1132

Hour of Day (Tue - Fri) ESI1 ESI2 ESI3 ESI4 ESI5
0 0 0.0481 0.2404 0.274 0.0769
1 0 0.0337 0.1683 0.2452 0.0288
2 0 0.0048 0.1058 0.2356 0.0144
3 0 0.0096 0.0673 0.1298 0.0096
4 0 0.0192 0.0865 0.1731 0.0337
5 0 0.0144 0.0865 0.1779 0.0096
6 0 0.0096 0.0625 0.125 0.0192
7 0 0 0.1635 0.1683 0.0337
8 0 0.0096 0.3125 0.274 0.0481
9 0 0.0433 0.4519 0.3558 0.149
10 0 0.0529 0.4904 0.4519 0.149
11 0 0.1298 0.4856 0.5144 0.1394
12 0 0.0721 0.5865 0.4663 0.1058
13 0 0.101 0.5962 0.4375 0.1058
14 0 0.1154 0.6106 0.4904 0.0721
15 0 0.1779 0.4183 0.5385 0.0529
16 0 0.0865 0.5481 0.476 0.0673
17 0 0.1538 0.7933 0.75 0.1298
18 0 0.1442 0.8317 0.8942 0.1538
19 0 0.1058 0.8269 1.0433 0.1298
20 0 0.1058 0.6875 0.9471 0.1923
21 0 0.125 0.6923 0.8077 0.1683
22 0 0.0721 0.6298 0.7115 0.0865
23 0 0.0385 0.3173 0.4856 0.0673
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Table EC.14 Expected Number of Arrivals by Hour of Day on Weekends

for Pediatric Patients Who Are Eventually Discharged From the ED.

Hour of Day (Sat & Sun) ESI1 ESI2 ESI3 ESI4 ESI5
0 0 0.0476 0.2857 0.3905 0.0857
1 0 0.0381 0.3238 0.2667 0.0476
2 0 0 0.1143 0.2667 0.019
3 0 0.0381 0.0952 0.2 0.019
4 0 0.019 0.1238 0.1048 0.019
5 0 0.0095 0.1048 0.1714 0
6 0 0.0381 0.1333 0.181 0.0286
7 0 0.0095 0.1333 0.2762 0.0286
8 0 0.0286 0.1524 0.3429 0.0762
9 0 0.019 0.2952 0.7714 0.1048
10 0 0.019 0.3714 0.9143 0.1143
11 0 0.0476 0.4667 0.9524 0.2286
12 0 0.0667 0.6857 0.9429 0.1619
13 0 0.0571 0.6476 0.9143 0.1524
14 0 0.1238 0.5429 0.781 0.2095
15 0 0.0952 0.6667 0.8381 0.1143
16 0 0.1238 0.4952 0.9619 0.1333
17 0 0.0857 0.781 0.8762 0.0952
18 0.019 0.0476 0.581 0.7714 0.0952
19 0 0.1143 0.619 1.2 0.1048
20 0 0.0571 0.5619 1.1333 0.181
21 0 0.1238 0.781 0.8286 0.1429
22 0 0.0857 0.6 0.7429 0.0952
23 0 0.0857 0.5429 0.5429 0.0952
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The probability of hospital admission for a random patient is a random variable and we estimated

its probability distribution conditional on the patient age category (adult or pediatric) and ESI

level. The estimated empirical distributions are given in Table EC.15. Note that in the table

EMP(p1, v1, p2, v2, . . . , pK , vK) denotes a discrete random variable Z with P{Z ∈ (v1, v2, . . . , vK)}=

1, P{Z = v1} = p1, and P{Z ≤ vk = pk} for 1 ≤ k ≤ K. In other words, pi is the cumulative

probability corresponding to vi.

Table EC.15 Probability Distributions for Hospital Admission Probabilities.

ESI Level Age Group Probability Distribution
ESI1 Adult EMP(0.002,0.848,0.264,0.901,0.49,0.939,0.729,0.962,0.986,0.977,0.994,0.992,1,1)
ESI2 Adult EMP(0.001,0.528,0.308,0.661,0.554,0.764,0.799,0.838,0.999,0.985,1,1)
ESI3 Adult EMP(0.001,0.175,0.388,0.275,0.648,0.425,0.848,0.525,0.999,0.875,1,1)
ESI4 Adult (0.003,0.018,0.56,0.03,0.841,0.055,0.961,0.083,1,0.1)
ESI5 Adult EMP(0.001,0.003,0.609,0.006,0.879,0.01,0.982,0.016,1,0.02)
ESI1 Pediatric EMP(0.001,0.854,0.956,0.923,1,0.95)
ESI2 Pediatric EMP(0.002,0.548,0.323,0.559,0.933,0.741,0.999,0.855,1,0.9)
ESI3 Pediatric EMP(0.003,0.204,0.952,0.387,0.999,0.679,1,0.77)
ESI4 Pediatric EMP(0.002,0.018,0.969,0.045,1,0.18)
ESI5 Pediatric EMP(0.001,0.004,0.961,0.009,1,0.01)
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E.5. Additional Plots Based on the Simulation Study for Scenario 1
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Figure EC.2 Long-Run Average Length-of-Stay for All Patients and Long-Run Average Number of Daily False

Bed Requests under ESIB, FT, CTT, FT applied to all ESI levels, and CTT applied to all ESI

levels for Scenario 1.
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Figure EC.3 Long-Run Average Length-of-Stay for Admitted Patients and Long-Run Average Number of Daily

False Bed Requests under ESIB, FT, and CTT for Scenario 1.

E.6. Additional Plots Based on the Simulation Study for Scenario 2
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Figure EC.4 Long-Run Average Length-of-Stay and Long-Run Average Number of Total Daily Early Bed

Requests under ESIB, FT, and CTT for Scenario 1.

2

4

6

8

10

12

500 507 514 521 528
Length of Stay (min.)

N
um

be
r 

of
 D

ai
ly

 B
eR

T
s

ESIB
FT
CTT

Figure EC.5 Long-Run Average Length-of-Stay for Admitted Patients and Long-Run Average Number of Total

Daily Early Bed Requests under ESIB, FT, and CTT for Scenario 1.
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Figure EC.6 Long-Run Average Length-of-Stay for Admitted Patients and Long-Run Average Number of Daily

False Bed Requests under ESIB, FT, and CTT for Scenario 2 with 400 beds.
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Figure EC.7 Long-Run Average Length-of-Stay and Long-Run Average Number of Total Daily Early Bed

Requests under ESIB, FT, and CTT for Scenario 2 with 400 beds.
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Figure EC.8 Long-Run Average Length-of-Stay for Admitted Patients and Long-Run Average Number of Total

Daily Early Bed Requests under ESIB, FT, and CTT for Scenario 2 with 400 beds.
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Figure EC.9 Long-Run Average Length-of-Stay for Admitted Patients and Long-Run Average Number of Daily

False Bed Requests under ESIB, FT, and CTT for Scenario 2 with 450 beds.
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Figure EC.10 Long-Run Average Length-of-Stay and Long-Run Average Number of Total Daily Early Bed

Requests under ESIB, FT, and CTT for Scenario 2 with 450 beds.
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Figure EC.11 Long-Run Average Length-of-Stay for Admitted Patients and Long-Run Average Number of Total

Daily Early Bed Requests under ESIB, FT, and CTT for Scenario 2 with 450 beds.




