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Abstract. Long boarding times have long been recognized as one of the main reasons be
hind emergency department (ED) crowding. One of the suggestions made in the literature to 
reduce boarding times was to predict, at the time of triage, whether a patient will eventually 
be admitted to the hospital and if the prediction turns out to be “admit,” start preparations 
for the patient’s transfer to the main hospital early in the ED visit. However, there has been 
no systematic effort in developing a method to help determine whether an estimate for the 
probability of admit would be considered high enough to request a bed early, whether this 
determination should depend on ED census, and what the potential benefits of adopting 
such a policy would be. This paper aims to help fill this gap. The methodology we propose 
estimates hospital admission probabilities using standard logistic regression techniques. To 
determine whether a given probability of admission is high enough to qualify a bed request 
early, we develop and analyze two mathematical decision models. Both models are simpli
fied representations and thus, do not lead to directly implementable policies. However, 
building on the solutions to these simple models, we propose two policies that can be used in 
practice. Then, using data from an academic hospital ED in the southeastern United States, 
we develop a simulation model, investigate the potential benefits of adopting the two poli
cies, and compare their performances with that under a simple benchmark policy. We find 
that both policies can bring modest to substantial benefits, with the state-dependent policy 
outperforming the state-independent one particularly under conditions when the ED experi
ences more than usual levels of patient demand.

Funding: This work was supported by the National Science Foundation [Grants CMMI-1234212 and 
CMMI-1635574]. 

Supplemental Material: The online appendix is available at https://doi.org/10.1287/opre.2022.2405. 
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1. Introduction
Long waits and congestion at emergency departments 
(EDs) have long been recognized as a challenging prob
lem to tackle. EDs have tested with and in some cases, 
adopted various novel operational methods to alleviate 
congestion levels and generally improve ED throughput. 
However, there seems to be a general agreement that 
substantial improvements can only be achieved with a 
systems-level perspective by adoption of policies that 
recognize and exploit the fact that ED operations are 
closely tied to the operations and decisions in the main 
hospital. Arguably, the close relationship between the 

ED and the main hospital and the potential benefits of 
effective coordination between the two can be seen best 
through patient boarding times,1 which constitute one of 
the major components of patients’ ED length of stay 
(LOS).2 When there are hospital beds available, a deci
sion to admit a patient from the ED to the main hospital 
initiates what we call the transfer preparation process 
(TPP), which includes identification of a specific bed and 
a care team for the patient in the main hospital and carry
ing out all the essential tasks for the patient’s transfer 
from the ED to the main hospital. When there are no hos
pital beds immediately available but a decision is made 
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to admit an ED patient, the TPP for the patient starts 
only after a hospital bed for the patient becomes avail
able. Thus, the TPP for a patient and any wait for a bed 
to become available, both of which can take a significant 
amount of time, are essentially what determine the 
patient’s boarding time. There are many reasons as to 
why the TPP time for a patient can take long. Armony 
et al. (2015) list 13 possible factors (each related to equip
ment availability, staff availability, ED-hospital synchro
nization, or other issues related to the hospital practices) 
that add to the duration of TPP for a given patient.

In many respects, a patient boarding in the ED is a 
sign of inefficient use of resources; the patient, who no 
longer needs ED care, continues to occupy an ED bed 
and demands the attention of ED staff, both of which 
could in fact be used for other patients either in the ED 
treatment area or in the waiting room. It is thus clear that 
keeping boarding times as short as possible is highly 
important, and what the ED can do to achieve this goal 
without active participation of the main hospital is very 
limited. The objective of this paper is to develop a frame
work that encourages and demands active involvement 
of the ED and the main hospital in an effort to reduce 
boarding times and investigate the potential benefits of 
adopting this framework in practice.

The framework we propose is based on the following 
simple idea; at triage, identify the patients who have a 
good chance to be admitted to the hospital at the end of 
their ED stay and request a bed for those patients right 
away at triage without waiting for the eventual disposi
tion decision for those patients. We call this practice bed 
request at triage (BeRT). If a hospital bed is available for 
the patient at the time of BeRT, TPP for the patient is ini
tiated right away; otherwise, the request is kept in a 
queue until a hospital bed for the patient becomes avail
able, at which time TPP is initiated. BeRT essentially 
aims to parallelize, to the extent possible, two main tasks 
performed for a patient while the patient is in the ED: the 
emergency care provided to the patient and TPP, which 
according to the current practice, are performed in 
sequence, one after the other.

The potential benefit of the parallelization achieved by 
BeRT is that the patient for whom a bed is requested at 
the time of triage will, once she is admitted, board in the 
ED for an amount of time that is much shorter than she 
would under the current system because the main hospi
tal will be ready for the patient’s transfer either by the 
time of the patient’s admit decision or soon after that. 
The downside is that the prediction at triage might be 
incorrect, and the patient might ultimately end up not 
being admitted to the hospital. This would be a problem 
because that would mean that hospital resources were 
not used in an efficient manner (i.e., resources that were 
used for TPP could have been used for a more urgent or 
essential task). In addition, this would have a negative 
impact on the future potential benefits of the practice, 

particularly during the early stages of implementing 
such a framework because the hospital staff involved 
might grow doubtful that the bed requests made by the 
ED will indeed result in actual patient transfers and get 
increasingly more reluctant to act urgently based on pre
diction alone without a definite admit decision.

One way an ED can identify patients with high likeli
hood of admission is by looking at patients’ emergency 
severity index (ESI) triage acuity level, which strongly 
correlates with patients’ eventual disposition decision, 
with lower ESI levels being closely associated with a 
higher likelihood of admission. For instance, an ED can 
decide to request beds early for all ESI-1 and ESI-2 
patients, at least during certain times of the day, believ
ing that their likelihood of admission is sufficiently high. 
(Including ESI-3 patients would not work well, as we 
discuss in more detail in Section 6 because for most EDs, 
that would mean very large numbers of false early bed 
requests every day.) Such a policy would be immedi
ately implementable without any further development 
in any ED that uses ESI classification for triage. EDs that 
use alternative triage schemes can also adopt similar pol
icies as long as acuity classes correlate with hospital 
admissions. However, it is not clear whether the simple 
criteria such a policy applies for requesting beds early 
would work well. ESI-1 and ESI-2 patients might indeed 
be the patients who are generally more likely to be 
admitted, but it is not clear whether beds should be 
requested early for all such patients. The ED might want 
to be more selective and request beds early for only a 
subset of ESI-1 and ESI-2 patients by identifying those 
who are particularly more likely to be admitted to the 
hospital. Furthermore, when deciding whether the likeli
hood of admission is high enough for an early bed 
request, the ED might want to take into account operat
ing conditions in the ED, such as the crowding level. The 
framework we develop in this paper can be used to help 
determine specifically for which patients beds should be 
requested early, possibly depending on the ED census.

In our framework, we make the decision of whether a 
hospital bed should be requested for a patient at the time 
of triage in two steps. First, for each arriving patient clas
sified as ESI-1 or ESI-2, based on the information avail
able only at the completion of triage, such as patient 
complaints, triage acuity level, demographic informa
tion, etc., we estimate the probability that the patient will 
eventually be admitted to the hospital. Then, based on 
this prediction and possibly some relevant system-level 
information, such as ED census, we make a decision as 
to whether a bed for the patient should be requested. 
This paper is mainly about this second step. Specifically, 
we are interested in the following question. Given the 
probability that a patient will be admitted to the main 
hospital based on what we know at the time of triage, 
should we place an early bed request for the patient? 
(We only consider ESI-1 and ESI-2 patients because in 
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the ED where our data came from, patients in these two 
groups constitute a sufficiently large pool of patients 
with a high probability of admission. Furthermore, our 
simulation studies showed that broadening this pool 
would only hurt the performance measures of interest. 
Note, however, that one can use this framework without 
restricting the attention to ESI-1 and ESI-2 patients alone, 
or one could consider a smaller or larger subset of the 
patients.) The first question of how to estimate the 
admission probability at triage is presented elsewhere in 
Mehrotra et al. (2017) and is out of our scope here. How
ever, it might be helpful to note that this estimation is 
done through logistic regression with predictor varia
bles, including patient ESI, patient age, and the presence 
or absence of chief complaints that are highly associated 
with hospital admission, such as respiratory distress. This 
regression-based probability estimation tool is named the 
admission prediction tool (APT).

As we discuss in Section 2, we are not the first to pro
pose the idea of placing hospital bed requests early for 
patients who are predicted to be eventually admitted to 
the main hospital. To the best of our knowledge, however, 
no prior work has developed a complete framework that 
prescribes not only how admission predictions should be 
made but also, how exactly these predictions should be 
used to make early bed requests from the hospital and 
then, tested the potential benefits of adopting such a frame
work. With this paper, we take the first step toward filling 
this gap. When developing our framework, we used data 
from an academic hospital ED in the southeastern United 
States. We have also used the same ED as the setting for 
our simulation study and for the pilot study we conducted 
to investigate the feasibility of and the challenges associated 
with the practice of making early bed requests. However, it 
is important to note that, as it should be clear from the rest 
of this paper, the proposed methodology is highly general 
and can easily be adapted to other EDs and hospitals, par
ticularly those in the United States.

In what follows, after a literature review (Section 2), 
we first give an overview of three early bed request poli
cies we will analyze in this paper (Section 3). Of these 
three policies, the emergency severity index-based policy 
(ESIB) is the simplest and can be used without any math
ematical or statistical model development or analysis, 
and therefore, it will serve as a benchmark for the other 
two policies, namely the fixed threshold policy (FT) and the 
census- and time-based threshold policy (CTT), which we 
develop and propose in this paper. Then, we give a short 
description of APT and the data set we used throughout 
the paper (Section 4). Section 5 is mainly devoted to the 
development of CTT. However, to motivate the mathe
matical decision problem, which CTT is based on, it 
starts with discussing the fundamental challenges and 
the basic issues that need to be considered when making 
early bed requests. Essentially, we argue that the overall 
goal should be to reduce average patient length of stay 

by making early bed requests but without leading to fre
quent false bed requests. Then, we develop mathemati
cal models that capture this basic trade-off, analyze these 
models, identify optimal or “good” solutions, and then, 
based on these solutions, provide a description of CTT, 
which prescribes whether an early bed should be requested 
for a patient given the patient’s admission probability and 
the ED census level. We also provide a formal descrip
tion of FT, which prescribes actions independently of the 
ED census level. Then, in Section 6, we report the results 
of a thorough simulation study we conducted to investi
gate the performances of the policies we propose. Our 
findings strongly suggest that the improvements in 
patient length of stay that would be achieved by adop
tion of the policies we propose, even with conservative 
levels of false bed requests, can be significant, particu
larly when the ED experiences high levels of patient 
load. The benchmark policy ESIB also performs well; 
however, the performances of FT and CTT are both stat
istically superior. We also find that CTT always performs 
at least as well as FT while outperforming it in most of 
the scenarios considered. Finally, in Section 7, we pro
vide our concluding remarks. Proofs of our analytical 
results and details of our simulation study are presented 
in the online appendix.

2. Relevant Literature
Several papers from the emergency medicine literature 
have investigated how hospital admissions can be pre
dicted in advance and discussed ways of using admis
sion probability estimates for making better decisions 
and improving patient flow. For example, see Boyle et al. 
(2012), Peck et al. (2012, 2013), Crilly et al. (2015), and 
Somanchi et al. (2022). To the best of our knowledge, 
however, Qiu et al. (2015) is the only paper to date that 
makes a specific proposal as to how the probability esti
mates can be used, and it is important to note that even 
in this paper, what the authors are mainly interested in 
and their general approach to their problem are com
pletely different from ours. Specifically, Qiu et al. (2015) 
is mainly interested in determining the “optimal” time 
for requesting a bed for a patient whose admission prob
ability is known. In contrast, we assume that if a bed is to 
be requested early for a patient, it has to be requested 
immediately after triage, but we focus on the question of 
whether an early bed request should be made in the first 
place considering the operational implications of the 
decision not only on that particular patient alone but at 
the system level on the collection of all the patients.

Although we are not aware of any prior work on the 
decision problem we investigate in this paper, it is 
important to note that over the last several years, the 
operations community has shown increasingly more 
interest in problems related to ED and hospital opera
tions, with some focusing specifically on patient flow. 
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Here, we review those that appear to be closest to our 
work. (For a recent review of modeling and analytical 
work on patient flow management, see Dai and Shi 
(2021).) Using data from a Singapore hospital, Shi et al. 
(2016) study in-hospital operations with the goal of 
reducing ED boarding times. Thus, the paper, consider
ing this general objective, is similar to ours as we also 
aim to reduce ED length of stay through shortening of 
ED boarding times. However, the two papers are funda
mentally different in how they envision that goal to be 
achieved. Shi et al. (2016) propose and test, via simula
tion, a hypothetical hospital discharge policy that pushes 
the discharge times to earlier in the day so that more 
in-hospital beds are available by the time the bulk of the 
ED patients arrive. In contrast, the policies we propose 
and test in this paper call for requesting hospital beds 
earlier, at the time of triage, for patients who have a high 
probability of being admitted.

Saghafian et al. (2012, 2014) investigate the potential 
benefits of streaming patients in the ED. Although the 
former paper mainly considers streaming with respect 
to whether a patient is likely to be admitted to the hospi
tal or discharged from the ED, the latter considers 
streaming with respect to patient complexity. Armony 
et al. (2015) provide a detailed mathematical and statisti
cal description of the operational features of an ED 
located in Israel, outline the fundamental blocks of an 
ED-hospital system, and provide directions for future 
research. Huang et al. (2015) view the patient prioritiza
tion problem in an ED as a queueing control problem 
and develop policies that help make the decision of 
which patient to see next in the ED. Xuang and Chan 
(2016) develop policies for patient admission to an ED 
taking into account information on future arrivals to the 
ED, with the goal of reducing waiting times. Chan et al. 
(2017a) are interested in the question of when to perform 
patient inspections for the purpose of determining whe
ther they can be discharged from the hospital. Kamali et al. 
(2019) investigate the question of under what conditions it 
would be beneficial to have a physician responsible for 
patient triage in addition to a nurse.

Ang et al. (2016) develop a method called Q-Lasso for 
predicting ED waiting times, implement the method in 
an actual ED, and find that the prediction error with 
Q-Lasso is significantly smaller than that under the best- 
performing rolling average policy, a type of estimation 
method that is currently in use by many hospitals. Chan 
et al. (2017b) study the impact of ED boarding on pati
ents’ intensive care unit length of stay, develop a queue
ing model that captures the phenomenon of service 
times being negatively affected by delays in access to 
service, and propose an approximation for the expected 
work in the system. Motivated by ED admissions to 
the main hospital, Dai and Shi (2017) develop a two- 
timescale queueing model, with the two timescales being 
an important feature that helps capture the length of stay 

in terms of hours and days, essentially enabling a more 
realistic formulation of hospital admissions from the ED. 
The authors then provide expressions for the steady- 
state distribution for the number of patients in the hospi
tal at midnight and several performance measures. Dong 
et al. (2019) study capacity management questions for inpa
tient wards, including strategies like off-service placement, 
which the hospitals typically employ in response to high 
patient demand levels. The paper provides solutions for 
and insights into how patient demand-bed supply balance 
can be achieved. In order to capture the relationship 
between early discharges and increased readmission risk, 
Shi et al. (2021) develop a Markov decision process (MDP) 
formulation with the goal of determining how many and 
which patients to discharge on each day given predictions 
of readmission at the individual patient level, develop a 
heuristic solution, and then, investigate the potential 
benefits of using this solution when making discharge 
decisions.

There are also papers that carry out empirical analysis, 
with the objective of developing a better understanding 
of and providing insights into managing ED and hospi
tal operations. For some recent examples of this line of 
work, see Kuntz et al. (2015), Song et al. (2015), Batt and 
Terwiesch (2016), Diwas and Terwiesch (2017), Long 
and Mathews (2017), and Ding et al. (2019).

Finally, it is important to note that the mathematical 
model we use to develop policies for making early bed 
request decisions is a type of dynamic queueing control 
problem, similar to that of Huang et al. (2015), and thus, 
our paper can be seen as a contribution to that area as 
well. However, although there are many papers written 
on the topic of how to dynamically assign servers to dif
ferent tasks in a stochastic network (see, e.g., Andradottir 
et al. 2003, Zayas-Caban et al. 2016, Legros et al. 2018), 
we are not aware of any papers on the question of how 
to dynamically determine what kind of service to per
form on a given job depending on the system state, 
which is essentially the decision our mathematical mod
els deal with.

3. From Simple to Complex, Three 
Different Approaches to BeRT

We are not aware of any emergency department that has 
a policy of requesting hospital beds for any of their 
patients prior to their disposition decisions. It will be rea
sonable to assume, however, that if an early bed request 
policy was to be implemented at an emergency depart
ment, it would try to identify patients who are highly 
likely to be admitted to the hospital and request beds 
early for those. One way to identify those patients is 
through their ESI classifications. The ESI class for each 
patient is readily known at the time of triage and is 
strongly correlated with admissions, with patients at 
lower levels being more likely to be admitted (see, e.g., 
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Chen et al. 2020). Thus, without going through the trou
ble of developing an estimation model for the probabil
ity of admission, an ED can simply choose to implement 
a policy that requests beds early according to patients’ 
ESI levels. For example, the policy might call for request
ing hospital beds early for all the patients classified as 
ESI-1 or ESI-2, at least during certain times of the day. In 
this paper, we call this policy ESIB. (Clearly, the ED 
might instead choose to request beds early only for ESI-1 
patients or perhaps, include ESI-3 patients as well. How
ever, as also confirmed by our simulation study (see 
Section 6.1), those policies would not work well because 
excluding ESI-2 patients will mean beds will be re
quested early only for a very small number of patients, 
whereas including ESI-3 patients will mean beds will be 
requested early for such a large segment of the patient 
population that there will be many false bed requests.)

ESIB is an easily implementable policy, but it is not 
flexible. Requesting beds early for all ESI-1 and ESI-2 
patients may not work all that well, and thus, it might be 
reasonable to identify ESI-1 and ESI-2 patients who are 
particularly more likely to be admitted and request beds 
early only for those patients. One way to do this is by 
developing a model that can be used to estimate the 
probability that a given ESI-1 or ESI-2 patient will be 
admitted to the hospital, use this model to identify those 
patients who are substantially more likely to be admitted 
based on some probability threshold, and request beds 
early only for those patients. We call this policy FT. Note 
that FT requests beds early for a subset of the patients for 
whom early bed requests would be made under ESIB, 
meaning that, just like ESIB, it restricts these requests to 
ESI-1 and ESI-2 patients, but for simplicity, we do not 
explicitly highlight this in the name of the policy.

With a carefully chosen threshold, FT would likely 
improve upon ESIB. However, the improvement might 
be even higher if the threshold is changed dynamically 
depending on time of day and ED census level. For 
example, when ED is crowded and waiting times are 
long, the limited bed capacity would be even more val
uable, and thus, it might make sense for the ED to take a 
little more risk and set a lower threshold. In general, 
however, it is not clear precisely how one should change 
the threshold level with changing the ED census. The 
core of this paper, presented in Section 5, is devoted to 
that question. Our analysis in that section leads to a 
dynamic policy, which we call CTT. Note that just like 
FT, CTT also restricts early bed requests to ESI-1 and 
ESI-2 patients.

ESIB, FT, and CTT can be seen as going from simple to 
complex, with CTT being the most sophisticated of the 
three. As we noted, ESIB does not require any new 
model development and can easily be implemented in 
practice. Therefore, in Section 6, we will use it as a bench
mark policy in our performance analysis of the policies 
we propose (i.e., FT and CTT). Both FT and CTT need a 

tool for estimating the probability of admission for 
patients based on information available at the time of tri
age. Next, in Section 4, we describe this tool, which we 
call the APT, along with the data used in its development 
and the rest of the paper.

4. Description of the Data and the APT
We considered a data set of patient visits to an academic 
hospital ED in the southeastern United States collected 
during the year 2012. According to the data, the ED had 
67,203 visits during the year, corresponding to about 184 
patients per day on average. Roughly, about 29.6% of 
the patients were admitted to the hospital. The average 
ED length of stay was about 356 minutes, the average 
ED workup time (time between rooming until the dispo
sition decision) was 212 minutes, and the average board
ing time was 235 minutes. After a cleanup of the data set, 
we ended up with approximately 65,065 patient entries. 
Each patient entry contained detailed data that included 
the following: time stamps (arrival time, disposition 
decision time, departure time, etc.), chief complaints, 
triage acuity/ESI, and demographic information (age, 
gender, race, etc.). We considered alternative logistic re
gression models, which can be used to estimate the hos
pital admission probability for ED patients based on 
information only available at the time of triage. Com
plete details of this analysis were presented in Mehrotra 
et al. (2017), but here, we give a summary of our basic 
findings and a rough description of the model chosen as 
the best in the end (i.e., what we call APT in this paper).

The key predictors of admission turned out to be ESI 
levels 1–3, the three most urgent triage levels of five; age 
groups 55–70 and above 70; and the existence of certain 
chief complaints, such as respiratory distress. Thus, the 
estimate for the admission probability as determined by 
our model, APT, is a function of the patient’s ESI level, 
age, and description of his or her main complaints at the 
time of triage. Hence, APT is basically a simple mathe
matical expression that returns an estimate for the proba
bility of hospital admission for a patient given the 
presence or absence of these predictors.

Our goal is to use the admission probability estimates 
to determine whether a hospital bed for a patient should 
be requested at the time of triage. A reasonable way of 
making this decision is by comparing the admission 
probability estimate with some threshold level ξ, which 
may or may not be fixed at all times, and requesting a 
bed if the estimate is large enough (i.e., larger than ξ). In 
this paper, we are concerned with how this threshold 
level ξ should be determined, possibly depending on 
system conditions, not the performance of APT itself. 
The policies we propose would work regardless of the 
admission probability estimator used. Nevertheless, it is 
important to note that the predictive power of APT is 
reasonably good. For example, if ξ is set to 0.9 at all 

Chen et al.: Hospital Admission Predictions for Improving Patient Length of Stay 
Operations Research, Articles in Advance, pp. 1–23, © 2022 INFORMS 5 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

15
2.

2.
23

0.
95

] 
on

 1
9 

Ja
nu

ar
y 

20
23

, a
t 0

8:
50

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



times, approximately 91% of early bed requests will 
result in actual patient admits to the hospital based on 
our data set (assuming that early bed requests are made 
for patients at any ESI level). The percentage drops only 
to 86 if ξ is set to 0.8. However, the reader should also 
note that the data set we used when developing APT 
was rather limited, and we believe that there is definite 
room for improvement with a more comprehensive 
study that involves a richer data set.

5. CTT and FT
Requesting beds early for patients who have a good 
chance to be admitted to the hospital has clear benefits 
for ED operations (at least from the perspective of reduc
ing overall ED patient length of stay), and thus, one 
might question why not adopt this practice widely and 
request hospital beds early even for patients who have a 
small but nonnegligible probability of being admitted to 
the hospital. However, looking at the issue from an ED 
perspective alone would be unhelpful as the practice 
would clearly require significant involvement of the 
main hospital staff as well. From the hospital side, prob
lems would arise if the ED frequently demands a bed 
from the main hospital only to cancel the request later on 
after realizing that the patient does not need to be admit
ted to the hospital after all. There are mainly two reasons 
why this would be problematic. First, a false bed request 
would mean that the hospital staff spent their time on a 
set of tasks that in fact did not need to be done, at least 
right away. Second, false requests, especially early on in 
the implementation of the policy of requesting beds at 
triage, are likely to present a significant impediment to 
the policy’s adoption and it being embraced by the hos
pital staff. They could possibly lead to the hospital staff 
losing trust in the policy, making them reluctant to 
respond to future early bed requests and leading to fric
tion between the ED and the main hospital staff.

In short, there are two competing goals one needs to 
keep in mind: reducing the overall ED length of stay and 
keeping false bed requests at minimum. Obviously, one can 
easily keep false bed requests at minimum, in fact at zero, 
by simply not making any early bed requests. On the other 
hand, the reduction in ED length of stay would be maxi
mized (at least in theory) if early bed requests are made as 
frequently as possible. These are two extreme positions one 
can choose to take. The former essentially describes the sta
tus quo, and we would like to improve upon that; the latter 
is simply not practically feasible because frequent false bed 
requests would very likely lead to the collapse of the whole 
policy of requesting beds early soon after its adoption. 
Thus, the ED and the hospital would prefer to operate 
somewhere in between, but it is not clear exactly where to 
operate and also, how to get there.

One way to balance the two competing goals described 
is by simply agreeing on a certain level of incorrect early 

bed requests that the ED and the hospital would be will
ing to bear and set a threshold level on the admission 
probabilities so that when early bed requests are made 
for all the patients whose admission probabilities exceed 
this threshold level, the target incorrect request level is 
met. For example, the hospital might decide that it 
would be willing to live with up to two incorrect re
quests per day on average. Then, using the empirical dis
tribution for the admission probabilities as well as the 
estimates on the daily number of patient arrivals, one 
can compute what threshold level would lead to the 
expected number of incorrect requests per day being 
equal to two and then, implement a policy that will 
request beds early for all the patients with admission 
probability that is larger than this threshold. However, 
one might argue that long boarding times would be par
ticularly detrimental when ED is crowded, and thus, it 
might make sense to set the threshold level dynamically 
depending on system conditions. The hospital might still 
want to meet a certain level in regard to the overall fre
quency of incorrect requests, but it might find it more pref
erable to live with potentially higher levels of false requests 
(by decreasing the threshold) when the ED is crowded and 
lower levels of false requests (by increasing the threshold) 
when the ED is not crowded. The question then is how to 
set the threshold level that will trigger early bed requests 
dynamically depending on ED crowding levels.

To answer this question, we use the following approach; 
we first cast the decision problem described from a per
spective of cost minimization, with costs tied to each unit 
of time a patient spends in the ED and each false bed 
request. We do not view these costs in dollar terms but as 
penalties that help define our objective in a convenient 
fashion, at least in some approximate way. One additional 
advantage of casting the problem as cost minimization is 
that, as we shall see later in the paper, the cost parameters 
can be used as tuning parameters at the policy implemen
tation stage. Even under the cost minimization objective, 
however, it is not clear how exactly one should formu
late the problem. One direction would be to consider a 
highly complex dynamic program that captures the act
ual ED/hospital system as realistically as possible and 
develop an approximate solution method. This would, 
however, lead to solutions, if possible at all, that are 
difficult for the practitioners to interpret and make ad
justments in practice. Another direction would be to con
sider the analysis of simplified formulations that capture 
the basic dynamics only, generate insights into the type 
of policies that might work well in practice, build on the 
solutions to these simple models, and propose practical 
policies. In this paper, we follow this latter approach.

To be clear, our ultimate objective remains the some
what vague but practically more useful goal of reducing 
the overall length of stay while keeping false bed requests 
low. We will come back to this objective later in the paper, 
in Section 6, where we make policy comparisons, but in the 
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rest of this section, our main focus will be on the develop
ment of cost models, their mathematical analyses, and the 
development of practical policies based on these analyses.

As we stated, our solution approach will be through 
the analysis of simplified mathematical formulations. 
However, first, it will be helpful to provide a formal des
cription of the problem with its close to full complexity so 
that the reader can better understand in what way our 
simplified models fit. As we explain, even for this more 
complex formulation, we will need to make some assump
tions that do not hold in practice. However, it is important 
to note that the policies we will be proposing in the end 
are not tied to these assumptions and that they will be 
tested using a realistic simulation model of an actual ED.

5.1. Problem Description
The problem we are interested in is a dynamic decision 
problem. Specifically, our objective is to minimize the 
total long-run average cost of keeping patients waiting 
and making incorrect early bed requests by deciding, for 
each patient, at the time of triage whether a hospital bed 
for the patient should be requested given the patient’s 
probability of admission to the hospital and the system 
state. What exactly this system state should include 
would depend on the degree of simplification one is 
willing to make through various modeling assumptions. 
In this section, our goal is to keep the formulation as 
general as possible but only resort to some simplifying 
assumptions when their absence would lead to significant 
modeling and notational complexity. As we explain, even 
under these simplifying assumptions, the resulting MDP 
formulation would still be too complex that its complete 
description would be long and heavy in notation. There
fore, in this section, we provide a general outline for this 
formulation mainly by stating the assumptions needed 
and formally describing the state space.

We consider a service system where patients go through 
one or two phases depending on their disposition deci
sion. The first phase corresponds to the ED stay, and the 
second phase corresponds to the hospital stay. There are 
KED servers for the first phase (corresponding to the ED 
beds) and KH servers for the second phase (correspond
ing to hospital beds). There are 10 types of patients corre
sponding to different combinations of ESI levels (five 
levels) and age (two levels: pediatric and adults). We 
assume that patients of type i � 1, 2, : : : , 10 arrive accord
ing to a Poisson process with rate λi (0 < λi <∞). As 
soon as a patient arrives, the patient goes through triage. 
We assume that the time it takes to perform triage on a 
patient is negligible, and therefore, the probability of 
admission for the patient is known as soon as the patient 
arrives at the ED. Let Zi

k denote the random variable rep
resenting the probability that the kth type i patient to 
arrive will be admitted to the hospital. We assume that 
for i � 1, 2, : : : , 10, {Zi

k}
∞
k�1 is a sequence of independent 

and identically distributed (iid) random variables with 

the common probability mass function specified as P{Zi
k �

αj} � qi
j for αj ∈Ω and k ∈ {1, 2, : : : }, where Ω � {α1, 

α2, : : : ,αM} is the finite set of possible values Zi
k can take.

Once the triage for the patient is complete, if there is 
an ED bed available, the patient starts the first-phase 
service. If there are no beds available, the patient starts 
waiting for an ED bed. Waiting patients are accepted 
into first-phase service as ED beds become available 
according to the order determined by their ESI levels 
and arrival times. Patients with lower ESI levels have prior
ity over those with higher ESI levels. Within the same ESI 
level, the order is according to first come, first served 
(FCFS). The first-phase service basically consists of what 
we call the ED workup time, the time between the patient’s 
rooming in the ED and the time a disposition decision for 
the patient is made, followed by either the boarding time or 
discharge time depending on whether the patient is admit
ted to the hospital or discharged from the ED.

The boarding time depends on whether a bed has 
been requested for the patient at the time of triage and 
whether a bed was available and assigned to the patient 
at the time the request was made. If a bed has not been 
requested at the time of triage, then the request is made 
at the time the patient is admitted to the hospital, in 
which case the boarding time is assumed to be equal to 
the TPP time if a hospital bed is available for the patient. 
If a bed has already been requested at the time of triage 
and the bed was available, then the boarding time is 
assumed to be equal to the time remaining until TPP is 
over, which might possibly be equal to zero. If, however, 
regardless of when a hospital bed is requested, there are 
no hospital beds available at the time of bed request, 
then the bed request joins a queue waiting for a hospital 
bed to become available. When a new hospital bed 
becomes available for allocation, the bed is assigned to 
one of the requests in the queue randomly. In that case, 
boarding time lasts until a bed is allocated to the patient 
and TPP, which starts right after allocation, is complete. 
If a patient is not admitted to the hospital, the patient 
continues to occupy the ED bed until the discharge proc
ess is complete. If a hospital bed was allocated to the dis
charged patient at the time of the patient’s triage, that 
bed becomes available for other patients. If a bed was 
not allocated but a request was waiting in a queue, the 
request is canceled. We assume that ED workup times, 
TPP times, and discharge times each are a separate seq
uence of iid exponentially distributed random variables.

Once the first-phase service of the patient is over, the 
patient moves to the second-phase service (hospital stay). 
The second-phase service times (i.e., times spent in hospi
tal beds) are also assumed to be iid exponentially distrib
uted random variables.

Assuming that it costs the system cw for each unit of 
time a single patient spends in the ED, ctr to request a 
hospital bed at the time of triage, and cad to request 
a hospital bed after disposition, the problem can be 
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formulated as an MDP with the objective of minimizing 
the long-run average cost. Decision epochs are the times 
at which patients are admitted to the ED. Specifically, 
every time a patient starts her first-phase service, a deci
sion is made as to whether a hospital bed should be 
requested for the patient in advance. The system state 
can be described as a vector with a size that depends on 
the state itself. Specifically, the number of dimensions 
needed to represent the state vector would depend on N, 
the number of patients in the ED. To completely describe 
system states, we introduce the following notation. For 
j � 1, 2, : : : , N, let Rj denote the current state for patient j 
who is the jth patient to have arrived at the ED among 
the N patients currently in the ED:

Rj � {
1 if patient j is waiting for an ED bed
2 if patient j is going through ED workup;

a hospital bed has been requested for the patient;
a hospital bed has been allocated but is not ready

3 if patient j is going through ED workup;
a hospital bed has been requested for the patient
but has not been allocated

4 if patient j is going through ED workup;
a hospital bed has been requested for the patient;
and the bed is ready

5 if patient j is waiting to be discharged
6 if patient j is boarding; a hospital bed has been

allocated but is not ready
7 if patient j is boarding; a hospital bed has been

requested but has not been allocated:

Let mj denote the hospital admission probability for 
patient j, which has to be part of the system state because 
this information is needed at the disposition time for 
patient j to determine whether the patient will be admit
ted to the hospital.

To model the bed occupancies at the hospital, we let H1 
denote the number of occupied hospital beds and H2 denote 
the number of hospital beds available for allocation. Note 
that at any given time, in addition to the occupied beds and 
the beds available for allocation, there can also be hospital 
beds that have been allocated but with TPP in progress 
and also, hospital beds that have been allocated for 
which TPP is complete but the patient to be admitted is 
still going through ED workup. However, we do not 
need to keep track of these beds separately because they 
can be determined through Rj. Then, the system state can 
be described by the vector (N, R1, R2, : : : , RN, m1, m2, : : : , 
mN, H1, H2), and the state space can be expressed as

X �
�

(n, x1, x2, : : : , xn, y1, y2, : : : , yn, h1, h2) |n ∈ Z;

xi ∈ {1, 2, 3, 4, 5, 6, 7};
yi ∈Ω for i � 1, 2, : : : , n; h1, h2 ∈ Z and h1 + h2 

+
Xn

i�1
1{xi∈{2,4,6}} � KH

�

:

Under the assumptions we stated in this section, we 
can model this problem as an MDP. In particular, given 
the state representation, one can write the transition 
probabilities and express the long-run average optimal
ity equations. However, doing that would only be an 
exercise in modeling without benefits because it is clear 
that providing a direct solution to this problem with no 
further simplification would be extremely challenging. 
(To get an idea about why transition probabilities would 
be somewhat complex, consider an event that completes 
the boarding time of a patient. This single event could 
possibly lead to a change in the values of every compo
nent of the state vector with the exception of H2 because 
some of the indices of the other patients in the ED will 
need to be updated as well.) It is also important to note 
that despite the complexity of this MDP, it would still 
fail to incorporate some of the basic features of the actual 
system. For example, we know that patient arrival rates 
very much depend on the day of week and time of day, 
and times spent in the ED and hospital are not exponen
tially distributed. It would also make much more sense 
to assume that newly vacated hospital beds are allocated 
to outstanding requests in an FCFS fashion, not randomly 
as we assumed. Relaxing any one of these assumptions, 
however, would make the problem substantially more 
complex.

In short, attempts to model this system realistically 
and developing methods that solve this problem directly 
do not appear to be a promising path. Therefore, our 
goal is to approach this problem from the opposite angle 
by considering highly simplified formulations but using 
their analysis to devise methods that can be imple
mented under realistic conditions. Next, in Section 5.2, 
we start following this path by focusing on a single 
patient/bed in isolation.

5.2. A Simple Decision Model for a Single 
Patient/Bed in Isolation

Consider an ED patient whose probability of admission 
to the hospital, as computed at the completion of triage, 
is z. Let S denote the generic random variable that re
presents the ED workup time. Let B denote the random 
variable representing the TPP time for the patient. We 
assume that if a hospital bed is requested for the patient, 
a hospital bed can be assigned to the patient right away 
so that B, the TPP time, is also equal to the time between 
the placement of a bed request and the time the hospital 
and the ED are ready for the patient’s transfer from the 
ED to the inpatient bed. We also assume that B does not 
depend on whether the bed is requested early at the 
completion of triage or later after the disposition deci
sion is made. Given that, it will be reasonable to assume 
that if the patient is discharged from the ED, then the ED 
bed will be occupied for S units of time in total. If a hos
pital bed is not requested early for the patient but the 

Chen et al.: Hospital Admission Predictions for Improving Patient Length of Stay 
8 Operations Research, Articles in Advance, pp. 1–23, © 2022 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

15
2.

2.
23

0.
95

] 
on

 1
9 

Ja
nu

ar
y 

20
23

, a
t 0

8:
50

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



patient ends up being admitted to the hospital, then the 
ED bed will be occupied for S + B units of time; if a hos
pital bed is requested early for the patient and the patient 
is admitted to the hospital, then the ED bed will be occu
pied for max(S, B) units of time. (Given our focus, we 
assume without loss of generality that the additional 
time a discharged patient spends in the ED is zero.) For 
the sake of simplicity, we assume that S and B are inde
pendent, S has an exponential distribution with mean 
1=γS, and B has an exponential distribution with mean 
1=γB.

The assumptions regarding costs are the same as 
described in Section 5.1, with cw denoting the per patient 
per unit time cost of having a patient in the ED and ctr 
and cad denoting the costs of putting in bed requests at 
the time of triage and after disposition, respectively. 
(Note that there is no need to consider an additional cost 
for a false bed request even if cad � ctr because for patients 
who are not admitted but for whom a bed was requested 
at the time of triage, ctr would incur, essentially captur
ing the cost of a false bed request.)

Then, if a bed is not requested (i.e., TPP is not initiated) 
at the time of triage, the expected cost is

cw(E[S] + zE[B]) + zcad � cw
1
γS
+ z 1
γB

� �

+ zcad:

If, however, a bed is requested at the time of triage, then 
the expected cost is

cw

�
E[S] + zE[max(B, S) � S]

�
+ ctr

� cw
1
γS
+ z 1
γB
� z 1
γS + γB

� �

+ ctr:

One can then show that requesting a bed at the time of 
triage is at least as good as waiting until the ED workup 
is over if and only if

z ≥ ctr

cad + cw(γS + γB)
�1 : (5.1) 

Not surprisingly, the simple single-bed/patient formu
lation leads to a simple threshold-type decision rule: 
request a hospital bed at the time of triage if and only if 
the admission probability for the patient is sufficiently 
high (i.e., above the threshold for which we have a math
ematical expression). The simple nature of the decision 
rule is appealing, but the reader might have noted two 
potential limitations and challenges associated with this 
approach. First, it is not clear how one would set the cost 
terms cw, ctr, and cad. This is an important question and 
will be addressed later in Section 5.5. However, even if 
the cost terms can be determined somehow, there is the 
question of whether it makes sense to use a formulation 
that assumes a single patient/bed in isolation when, in 
fact, we know that EDs are typically highly crowded, 
and how long a bed is kept occupied by a particular 

patient has an impact on the waiting time of future 
patients, incurring system costs that go beyond what is 
experienced by the patient alone. Next, we expand on 
our single-patient/bed formulation in an effort to cap
ture the system-level impact of decisions made for indi
vidual patients.

5.3. Incorporating ED Census into 
BeRT Decisions

The basic question we are interested in throughout this 
section is how the decision of whether to request a bed 
for a patient at the completion of triage should depend 
on the ED census at the time the decision is made. As we 
discussed before, our goal is to develop solution meth
ods through the analysis of simplified formulations. 
Thus, to incorporate ED census into our decision frame
work, we first abstract away from the actual system, ana
lyze a mathematical model that captures the very basic 
underlying dynamics, and establish a structure for “good” 
decision rules. Then, we develop a method for identifying 
and fully describing a policy that possesses such a struc
ture. Later, in Section 5.5, we explain how we can fully 
operationalize this policy in practice.

5.3.1. Identifying the Structure of Good Policies: A 
Queueing Approach. There are mainly three simplifica
tions we bring to the problem. First, we assume that each 
ED bed has a separate stream of patients who line up for 
admission to that bed. Second, we assume that patients 
arrive according to a stationary process. Third, we as
sume that there is always a hospital bed that can be allo
cated to a bed request. None of these assumptions hold 
in reality. EDs have multiple beds, and waiting patients 
are admitted to these beds as they become available. 
Arrivals to the EDs are known to be highly nonstation
ary. Finally, there are finitely many hospital beds, and it 
is possible that all of these beds are full when an ED 
patient is admitted to the hospital. However, as long as 
the total patient load is allocated to each bed, it might be 
reasonable to expect that assuming a separate arrival 
stream may not be all that harmful. For the patient 
arrival process, given the difficulty of analyzing queue
ing models with nonstationary arrivals, one might pro
ceed with assuming stationarity for the analysis and 
incorporate nonstationarity in a heuristic fashion posta
nalysis. Similarly, even though direct incorporation of 
hospital bed capacity will not be possible (because of 
analytical difficulties as well as our lack of access to the 
relevant data), as we explain later in the paper, depend
ence on hospital bed capacity can be captured at least parti
ally through time-dependent estimation of TPP times.

Specifically, for our queueing analysis, we consider a 
single-server queue, where the server is meant to repre
sent an ED bed. Similar to the model described in Section 
5.1, we assume that patient arrivals follow a Poisson 
process with rate λ (0 < λ <∞); triage times are negligible; 
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and thus, at the time of a patient’s arrival, the hospital 
admission probability for the patient is known. Differing 
from the model of Section 5.1, however, patients are served 
according to the FCFS principle. There is also a single 
patient type. Therefore, we drop the type superscript we 
used in our earlier formulation and use Zk to denote the 
random variable representing the probability that the kth 
patient to arrive will be admitted to the hospital. Just as 
before, we assume that {Zk}

∞
k�1 is a sequence of iid random 

variables with the common discrete probability distri
bution specified as P{Zk � αi} � qi for αi ∈Ω and k ∈
{1, 2, : : : }, where Ω � {α1,α2, : : : ,αM} is the finite set of 
possible values Zk can take. Without loss of generality, 
we assume that αi is increasing in i. We also let α �
E[Zk] �

PM
i�1 qiαi so that α represents the probability 

that a randomly chosen patient, pretriage, will be ad
mitted to the hospital.

The assumptions regarding workup and TPP times 
and costs are the same as in the single-patient model of 
Section 5.2. Specifically, letting Sk denote the ED workup 
time and Bk denote the TPP time for patient k, we assume 
that {Sk}

∞
k�1 is a sequence of iid random variables with 

exponential distribution with rate γS and that {Bk}
∞
k�1 is a 

sequence of iid random variables with exponential dis
tribution with rate γB.

The decision to be made is that every time the server 
picks up a new patient, given the probability of admis
sion for the patient and the number of patients in the 
queue, whether to request a hospital bed for the patient. 
If a bed is requested for patient k, whose probability of 
admission is z, it costs ctr and the length of time the 
server (i.e., the ED bed) remains occupied by the patient 
would be max(Sk, Bk) with probability z and Sk with 
probability 1� z. If no bed is requested for the patient, 
then with probability z, a decision to admit the patient 
will still be made; because this decision will have been 
made after the workup is over, it will cost cad, and the 
length of time the server will be occupied by the patient 
will be Sk +Bk. With probability 1� z, no bed will be 
requested costing nothing, and the server will be occu
pied for Sk units of time. (Mostly for analytical conven
ience, we allow the decision maker to reverse their 
decision regarding the early bed request as the number 
of patients in the queue changes as long as the patient’s 
workup in the ED is still going on and if already re
quested, the hospital bed for the patient has not already 
been prepared.) The objective of the decision maker is to 
minimize the long-run average cost in this queueing 
system.

We model this problem as an MDP. The state space X 
can be described as X � {0} ∪ {(m, n) |m ∈Ω ∪ {r, p}, 
n ∈ Z+}, where state 0 is the state where the system is 
empty, states (m, n) are the states in which there are n ≥ 1 
patients in the system (including the patient with the ser
ver), and m is specified as follows. In any state for which 

m � αi ∈Ω the workup for the patient with the server is 
either in progress or about to start, the patient’s probability 
of admission to the hospital is αi, and no hospital bed is 
readily waiting for the patient to be transferred to. In any 
state for which m� r the workup of the patient with the 
server is in progress and the hospital bed for the patient is 
ready (i.e., the TPP for the patient is complete). Finally, in 
any state for which m � p the patient with the server is 
already done with her ED workup and her TPP is in 
progress. The action space is A � {0, 1}, where zero corre
sponds to the decision of not requesting and one corre
sponds to the decision of requesting a hospital bed early 
with the restriction that no action is available in state 0 and 
action 1 is only available in states x � (αi, n), where n ≥ 1 
for some i ≥ 1 (i.e., when there is at least one patient in the 
system and neither the patient is already done with the ED 
workup and is waiting for the hospital bed to be available 
nor the requested hospital bed is ready and is waiting for 
the patient’s ED workup to be over). A stationary policy is 
then defined as a mapping from the state space X to the 
action space A. In the following, we restrict ourselves to the 
class of nonidling policies, which imply that the ED bed is 
never kept empty (the server is never idle) as long as there 
are patients waiting.

Using uniformization, the continuous-time MDP for
mulation can equivalently be written as a discrete-time 
MDP. Let β � λ+ γS + γB denote the uniformization con
stant. We set β � 1 without loss of generality. For any x ∈
X, let h(x) denote the relative value or bias for state x. For 
expositional convenience, we further define h(αj, 0) �
h(0) for j � 1, 2, : : : , although (αj, 0) is not an element of 
the state space X. Finally, let g denote the long-run aver
age cost under an optimal policy. Then, the optimality 
equations can be written as follows:

g+ h(0) � λ
XM

j�1
qjh(αj, 1) + (γS + γB)h(0); (5.2) 

for all n ≥ 1 and αi ∈Ω,

g+ h(αi, n) � ncw +λh(αi, n+ 1) + (1� αi)γS

XM

j�1
qjh(αj, n� 1)

+ αiγSh(p, n) + γBmin h(αi, n) +
αiγS
γB

cad, h(r, n)
�

+
γS + γB
γB

ctr

�

, (5.3) 

where h(αj, 0) � h(0) �
PM

k�1 qkh(αk, 0)) for all j. For all 
n ≥ 1,

g+ h(r, n) � ncw +λh(r, n+ 1) + γS

XM

j�1
qjh(αj, n� 1)

+ γBh(r, n), (5.4) 

g+ h(p, n) � ncw +λh(p, n+ 1) + γB

XM

j�1
qjh(αj, n� 1)

+ γSh(p, n): (5.5) 
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We first establish the existence of the solution to the opti
mality equations and consequently, the existence of a 
stationary optimal policy. (The proofs of all the analytical 
results are given in the online appendix.)

Theorem 1. Suppose that λ 1
γS
+ αγB

� �
< 1. Then, there exists 

a finite constant g and a finite function h(·) that satisfy the 
average cost optimality equations as stated in (5.2)–(5.5). Fur
thermore, if π∗ is a stationary policy that returns the action 
that minimizes the right-hand side of the optimality equations 
given system state x, then π∗ is average cost optimal with aver
age cost g.

Theorem 1 essentially states that if λ 1
γS
+ αγB

� �
< 1 (i.e., 

if the queue is stable under the policy of never requesting 
beds early), then there exists a solution to the optimality 
equations, and an optimal policy can be determined 
using this solution. Under this condition, we can further 
prove that there exists an optimal policy that has a 
threshold structure as outlined in the following theorem.

Theorem 2. Suppose that λ 1
γS
+ αγB

� �
< 1. Then, there exists 

an integer N(αi) for each αi ∈Ω such that the policy when the 
system is in state (αi, n) requests a hospital bed for the patient 
if and only if n ≥N(αi) is optimal. Furthermore,
N(αi) :�

inf n ≥ 1 : h(αi, n)� h(r, n) >
γS + γB
γB

ctr �
αiγS
γB

cad

� �

:

The fact that there exists an optimal threshold-type pol
icy as stated by Theorem 2 is not surprising. Never
theless, the result formally confirms our intuition and 
provides a rigorous support for seeking policies of such 
structure. In fact, we can push this analytical character
ization one step further and show that this threshold on 
the number of patients is weakly decreasing in the 
admission probability.

Theorem 3. Suppose that λ 1
γS
+ αγB

� �
< 1. Then, the optimal 

threshold N(αi) is a nonincreasing function of αi ∈Ω.

With Theorem 3, we know that the higher the hospital 
admission probability for a patient, the lower the bar (in 
terms of the number of patients in the system) for mak
ing an early bed request. The result also immediately 
implies that we can equivalently define the threshold on 
the admission probability rather than the number of 
patients. In other words, rather than aiming to find the 
optimal threshold level on the number of patients given 
the hospital admission probability, we can instead aim 
to find the optimal threshold level on the admission 
probability given the number of patients in the system.

As a result of our queueing analysis presented here, 
we can conclude that there is some support for a policy 
that sets a certain threshold level on the admission prob
ability for making early bed requests and decreases this 

threshold level as the number of patients in the ED 
increases. Such a policy would also intuitively make 
sense because one would expect quick turnover of ED 
beds to be more beneficial when ED is crowded. The 
question, however, is how one can determine what spe
cific policy to use (i.e., how precisely the threshold levels 
should be determined) in practice. Even in the highly 
specialized queueing setting we considered here, our 
results do not provide a complete characterization of an 
optimal policy. Theorem 2 gives an expression for N(αi), 
the threshold as a function of the admission probability 
αi, but this expression is in terms of the bias function h(·), 
which is not known. An ideal solution would be to have 
a closed-form expression for the optimal threshold N(αi)

in terms of parameters, which can be estimated from the 
existing data. This does not appear to be doable. How
ever, we were able to develop a heuristic solution, which 
is described by a closed-form expression for a threshold 
function and has a performance that is very close to the 
performance under the optimal threshold levels. The 
basic idea behind the heuristic rests on first solving the 
clearing version of the queueing model presented and 
then, adjusting the solution to account for the fact that 
the clearing model ignores future arrivals.

5.3.2. Clearing Version of the Queueing Model and its 
Analysis. We introduce the following simplification to 
the model we studied in Section 5.3.1; there are l <∞
patients initially in the system, and there will be no 
future arrivals. All other model assumptions remain the 
same, but in this case, we seek an optimal policy, which 
minimizes the expected total cost that will accumulate 
until the system is cleared of all the patients.

The server serves the patients in a random order. The 
admission probability for a patient is known only after 
the patient is chosen for service, and the server has to 
complete the service of a patient he or she has already 
chosen before moving on to another patient. The state 
space Y can then be described as Y � {0} ∪ {(m, n) |m ∈
Ω ∪ {r, p}, 1 ≤ n ≤ l}, where m and n are defined as in 
the queueing model described in Section 5.3.1. Letting 
V(y) for y ∈ Y denote the total expected cost that will 
accumulate until all the patients leave the system start
ing from state y, we can write the optimality equations 
as follows.

For 1 ≤ n ≤ l,

V(αi, n) � ncw

γS + γB
+
(1� αi)γS
γS + γB

XM

j�1
qjV(αj, n� 1)

+
αiγS
γS + γB

V(p, n)

+
γB

γS + γB
min V(αi,n) +

αiγS
γB

cad,V(r, n)
�

+
γS + γB
γB

ctr

�

, 
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where we let V(αi, 0) � V(0) � 0 for all αi ∈Ω for nota
tional convenience:

V(r, n) � ncw

γS + γB
+
γS

γS + γB

XM

j�1
qjV(αj, n� 1)

+
γB

γS + γB
V(r, n), 

V(p, n) � ncw

γS + γB
+
γB

γS + γB

XM

j�1
qjV(αj, n� 1)

+
γS

γS + γB
V(p, n):

The following theorem provides a complete character
ization of the optimal policy.

Theorem 4. For any given state y � (αi, n), it is optimal to 
request a hospital bed early if and only if

n ≥
(ctr � αicad)(γS + γB)

αicw
: (5.6) 

The right-hand side of Inequality (5.6) provides a simple 
convenient formula for the optimal threshold on the 
number of patients, above which a hospital bed should 
be requested for the randomly selected patient. The 
threshold is a function of the patient’s admission proba
bility. However, it is determined under the assumption 
that no future patients will arrive. Next, we propose an 
approximate way of incorporating the reality that there 
will be future arrivals into the threshold formula given 
in (5.6).

The queue-length process of a single-server queue can 
be seen as consisting of a sequence of independent 
cycles, with each cycle defined by one busy period (dur
ing which there are customers in the system and the 
server is busy) and one idle period (during which there 
are no customers in the system and the server is idle). As 
it is clear from our queueing formulation, costs incur, 
and one can have some control on the costs only when 
the system is in the busy period. Therefore, it might be 
reasonable to believe that focusing on the minimization 
of the expected total cost that accumulates over busy 
periods might lead to policies that perform well under 
the long-run average cost minimization objective as 
well. Coming up with a precise description of the opti
mal policy that minimizes total costs over busy periods, 
however, is not any simpler than coming up with one for 
the queueing formulation in the first place. Nevertheless, 
it would be reasonable to believe (in part based on Theo
rems 2 and 3) that there must exist a threshold-type pol
icy, which performs well if not optimally, and that the 
threshold should be lower when the admission probabil
ity for the patient is higher and when the arrival rate to 
the queue is higher (i.e., when the busy period is more 
likely to be long). As a heuristic solution, one can directly 
use the policy described in Theorem 4, but because the 

clearing model ignores future arrivals, it underestimates 
the load on the system (more specifically, the number 
of patients who will receive service during the busy 
period), and as a result, the policy would most likely 
offer a threshold level that is higher than what it should 
be. To account for this deficiency, we propose that n on 
the left-hand side of (5.6) be replaced by n=(1� λτ), 
which is the expected number of patients who will be 
served until the first time the server is idle under the 
assumption that the expected time the server is occupied 
by each patient is τ. Note that this time in fact depends 
on the policy used, but for approximation purposes, we 

set τ �
�

1
γS
+ αγB
� α
γS+γB

��1
, which is the expected time 

the server is occupied by a patient under the assumption 
that the hospital bed is requested at the time of triage. 
Thus, as a heuristic solution to the queueing problem, 
we propose the following threshold on the number of 
patients given the admission probability of a patient:

n ≥
(ctr � αicad)(γS + γB)(1� λτ)

αicw
, (5.7) 

or equivalently, the following threshold on the admis
sion probability for the incoming patient given the 
number of patients currently in the system:

αi ≥
ctr

cad + ncw((γS + γB)(1� λτ))
�1 : (5.8) 

It might be helpful to compare this threshold with 
(5.1), the threshold suggested by our single-patient/bed 
formulation 

�
z ≥ ctr

cad+cw(γS+γB)
�1

�
. Note that the difference 

between the two thresholds is in the multipliers for 
the waiting cost parameter cw. The threshold for the 
queueing/clearing approach has the extra n(1� λτ)�1 

multiplier capturing the effect of the existing number of 
patients in the system and the overall load.

Our numerical experiments, which are not provided 
here in the interest of space, showed that the perform
ance of the policy that uses the threshold (5.7) (or (5.8)) 
within our queueing framework of Section 5.3.1 is very 
close to that of an optimal policy. Thus, our heuristic sol
ution approach works very well within the confines of 
our queueing model. However, our ultimate objective is 
to develop a “good” solution for the actual system, not 
for the queueing model. To that end, in the next section, 
we describe how one can develop practical rules based on 
the results of this section and propose a specific policy.

5.4. A Heuristic for Deciding When to BeRT: CTT
There are several challenges in devising a “good” imple
mentable policy based on our mathematical analysis. In 
particular, one needs to find a way to marry the station
ary single-bed approach of our simplified mathematical 
models with the reality that EDs have multiple beds, 
they operate in highly nonstationary environments with 
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time-dependent patient arrival rates and workup times, 
and the timely availability of (or lack thereof) hospital 
beds might have a significant impact on boarding times. 
It is also not clear how one can set the values of the cost 
terms cw, cad, and ctr in practice. We postpone the discus
sion of how to set the cost parameters until Section 5.5. 
Here, we explain how we get around the other challenges.

To capture the nonstationarity of patient arrivals to 
the ED, ED workup times, and boarding times, we pro
pose using the time-based estimates of the model param
eters as the policies are implemented in real time. For 
example, when using the threshold expressed in (5.1) in 
the policies we propose, if the decision is made at some 
time t where t corresponds to a specific one-hour win
dow on a specific day of the week, in place of 1=γS and 
1=γB, we respectively use the estimates for the expected 
ED workup time and expected boarding time corre
sponding to that one-hour time window. (In fact, we 
push this one step further and allow the estimates 
to depend on not only time but also, the ESI and 
adult/pediatric classification of the patient.) This allows 
the policies to be more responsive to the changing 
dynamics throughout the week and through each day, 
and it helps capture the scheduled changes in staffing 
levels as well as hospital bed availabilities, which are 
known to vary significantly with time depending on the 
hospital’s patient discharge practices (see, e.g., Shi et al. 
2016). (Complete details on our estimates for the ED 
workup, boarding, and discharge times are provided in 
Section E.4 of the online appendix.)

Specifically, we divide each day of the week into 24 
disjoint one-hour time slots, resulting in a total of 24 × 7 
� 168 time intervals over each week, with the first time 
slot of each week corresponding to 12:00–12:59 a.m. on 
Sunday and the last slot corresponding to 11:00–11:59 
p.m. on Saturday. Consider a patient who is admitted to 
her ED bed at time t, and suppose that her hospital 
admission probability (as estimated at triage) is z. Sup
pose also that at the time the patient is admitted to the 
ED bed, there are N patients in total, including the 
patient herself, and other patients in the ED occupying 
ED beds as well as those who are waiting either for triage 
or for an ED bed to become available posttriage. Let K 
denote the total bed capacity of the ED at time t. (The 
bed capacity and the staffing levels in most EDs, like in 
the ED where our data came from, change according to 
predetermined schedules.) Suppose that λ denotes the 
estimated new patient arrival rate for time period t. Let 
1=γS and 1=γB denote the expected ED workup time and 
expected boarding time, respectively, corresponding to 
time period t, the patient’s ESI level, and whether the 
patient is adult or pediatric patient. Thus, K and λ 
depend on t, whereas γS and γB depend on t as well as 
the ESI level and the age category of the patient, but we 
suppress this dependency in our notation for exposi
tional simplicity.

One important issue to address is a potential unin
tended consequence of requesting hospital beds early 
when hospital capacity is extremely tight. If a hospital is 
too crowded for a long period of time to the extent that 
there is typically no hospital bed readily available when 
a bed is requested and almost all the hospital bed re
quests are put in a queue, then there is a possibility that 
because of the flooding of the queue with false early bed 
requests, the queue can be unstable, and as a result, 
boarding times of patients who are actually admitted 
can get increasingly longer. To prevent this from hap
pening, it would be reasonable to turn off early bed 
requests whenever the hospital gets close to its full capa
city, and therefore, as part of our policy, we propose that 
beds can be requested only when the number of hospital 
beds that are available for future ED patients is greater 
than or equal to some predetermined protection level, which 
conservatively, can be set to be equal to the expected 
number of hospital admissions on a given day.

Now, let us proceed with the development of the deci
sion rules for our policy. Let M denote the number of 
hospital beds currently available for allocation to the ED 
patients who will be admitted to the hospital, and let A 
denote the predetermined protection level for the num
ber of hospital beds. If M < A at the time a patient goes 
through triage, then regardless of the hospital admission 
probability of the patient or the ED crowding level, a 
hospital bed will not be requested for the patient at tri
age. If M ≥ A, then whether a hospital bed will be 
requested early for the patient depends on the patient’s 
admission probability and the ED crowding level as 
explained in the following.

First, suppose that N ≤ K (i.e., there are no patients 
waiting for an ED bed to become available). In this case, 
it would be reasonable to assume that the impact of the 
early bed decision made for the patient on the future 
patients would be minimal, and thus, it would make 
sense to use a decision rule that focuses on a single 
patient alone as we did in Section 5.2. Thus, the policy 
we propose calls for using the threshold in (5.1).

Suppose now that n > K. In this case, there are already 
patients waiting for an ED bed to become available, and 
therefore, it will be important to capture the queueing 
dynamics so as to factor in the impact of decisions made 
for a particular patient on the waiting times of the future 
patients. It would be reasonable to assume that as long 
as n>K because all the beds will be occupied (all 
“servers” are busy), the evolution of the queue-length 
process in this multiserver queue will be like the evolu
tion of a single-server queue, with the service speed of 
the server being K times the speed of a single server. 
Therefore, it would be reasonable to use a policy that is 
based on the threshold (5.6) obtained in Section 5.3.2. 
One problem with approximating the multiserver queue 
with the single-server one as described is that the single- 
server queue overestimates the percentage of time there 

Chen et al.: Hospital Admission Predictions for Improving Patient Length of Stay 
Operations Research, Articles in Advance, pp. 1–23, © 2022 INFORMS 13 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

15
2.

2.
23

0.
95

] 
on

 1
9 

Ja
nu

ar
y 

20
23

, a
t 0

8:
50

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



are more than K patients in the ED (because in the single- 
server queue when N < K, there is in effect no one in the 
system, and consequently, there is no service), and as a 
result, the decision rule with this approximation would 
likely be more inclined to request beds early by setting a 
threshold level lower than it should. Therefore, it would 
be reasonable to make an adjustment on this threshold 
by shifting the threshold curve (as a function of N) 
upward so that when the function is evaluated at n � K, 
it will match with the single-patient threshold of (5.1). 
This way, the threshold, as a function of N, would be a 
continuous function with a flat portion for N ≤ K and a 
convex decreasing portion for N > K. With this adjust
ment in place, CTT can be described as follows.

5.4.1. Description of the CTT Policy. 
If M <A, request a hospital bed for the patient, if 

needed, only after the disposition decision for the patient.
If M ≥A and N <K, then request a hospital bed for 

the patient at the completion of triage if the patient is an 
ESI-1 or ESI-2 patient and

z ≥ ctr

cad + cw(γS + γB)
�1 ; (5.9) 

otherwise, request the bed, if needed, after the disposi
tion decision for the patient.

If M ≥A and N ≥K, then request a hospital bed for 
the patient at the completion of triage if the patient is an 
ESI-1 or ESI-2 patient and

z ≥ ctr

cad + (N � K)cw(K(γS + γB))
�1
(1� λτ)�1 

�
ctrcw

cad(cad(γS + γB) + cw)
; (5.10) 

otherwise, request the bed, if needed, after the disposi
tion decision for the patient.

5.5. Setting the Parameters of CTT
There are no easy answers to the question of how one 
should set the cost parameters of CTT. As we explained 
at the beginning of Section 5, these cost parameters are 
not meant to be taken in dollar terms but rather, as 
weights that help capture the trade-off between the 
number of false bed requests and the average ED length 
of stay, the two main performance measures of interest. 
It does not seem to be difficult for practitioners to recog
nize that what matters is not the actual values of these 
parameters but rather, their values relative to each other, 
and these parameters can best be seen as tools for mak
ing adjustments and fine-tuning the policy once it is put 
in place. Nevertheless, one has to have at least some 
rough idea as to what values should be considered at the 
very least for starting the implementation and guiding 
any future adjustments.

There appears to be no discernible reason as to why ctr 
and cad should be different from each other. It would also 
be reasonable to normalize their values by setting ctr �

cad � 1 and focus on how one should set cw accordingly. 
Physicians and other key decision makers in the ED can
not directly come up with an estimate for cw, but we can 
start with the assessments and opinions that they would 
be relatively comfortable with and that roughly capture 
the main trade-offs between the “cost” of making incor
rect early bed requests and potential operational gains 
and use them to come up with an estimate for cw. For 
example, we found out that ED physicians would be rel
atively comfortable with making an assessment as to 
how many true early bed requests would be needed on 
average for every false early bed request and used this 
assessment to come up with a range for cw. When mak
ing this rough assessment, physicians need to weigh the 
potential benefits of making early bed requests with the 
potential negative reaction that false requests would get 
from the hospital staff and management, which could 
also potentially culminate in resistance to the adoption 
of the early bed request practice with time.

Let m denote the number of true early bed requests 
that we need to have for every false early bed request, 
and let DLOS denote the random variable denoting the 
difference between the ED length of stay without early 
bed request and the ED length of stay with early bed 
request for a random patient. Then, if we ignore the 
impact of a true bed request on the patients in the ED 
other than the patient for whom the bed is requested, the 
expected total length of stay “savings” from m true early 
bed requests would be mE[DLOS]. We can then argue 
that if m true early bed requests are equal in value to one 
false early bed request, we must have cwmE[DLOS] � 1, 
and thus, we can evaluate cw in terms of m by

cw �
1

mE[DLOS]
:

Obviously, this formula will not give us an absolute 
value for cw because apart from the approximations we 
made, there is not a definite answer as to what m should 
be. Furthermore, because we ignored the impact of the 
early bed request on the other patients, cw, as computed, 
should be taken more as an estimate for a lower bound. 
Therefore, it would be reasonable to start with a com
monly agreed upon choice for m, use the formula to get a 
lower bound for cw, and then, consider a range of choices 
that are larger than cw.

Using our data from the ED, we estimated that 
E[DLOS] � 1:98 hours for a random patient. When 
making this estimation, we had to make an assumption 
as to how long TPP for a random patient would last 
when the request is put in early because there are no 
data that one can use to make this estimation. Specifi
cally, we assumed that TPP for the patient would be the 
same as what the boarding time for the patient would 
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have been if the bed was not requested early. We also 
kept the distributional assumptions we made for the ED 
workup and boarding times in our mathematical model 
of Section 5. The choice of m � 10 was deemed to be rea
sonable by one of the coauthors of this paper who is an 
emergency medicine physician and the vice chair of stra
tegic initiatives and operations at a hospital, which 
implied cw � 0:051 units per hour. In our simulation 
study, we picked cw values within a range that is slightly 
above 0.051, specifically within the range of 0.06–0.26. In 
Section 6, we provide more explanation for this choice.

5.6. FT
There are no significant obstacles to implementing CTT 
in practice. One can easily integrate it as a decision sup
port tool with the existing electronic healthcare record 
system in place, and using the simple formulas provided 
in the description of CTT in Section 5.4, the tool could 
easily and quickly determine whether conditions (in
cluding the health condition of each patient as well as 
ED census levels) justify requesting a bed early and alert 
the appropriate ED staff to initiate TPP.

Nevertheless, it can still be potentially desirable to use 
even a simpler policy: for example, one that sticks with a 
single threshold level on the probability of admission 24 
hours a day regardless of the changing ED census as 
long as hospital beds are not in short supply (i.e., as long 
as the number of hospital beds that are available for allo
cation to newly admitted ED patients is greater than the 
predetermined level of A). We call this policy the FT. 
(Note that just like ESIB and CTT, FT also considers 
ESI-1 and ESI-2 patients only for a potential early bed 
request.) The obvious question when implementing this 
policy is what exactly the fixed threshold should be. One 
possibility is to set the threshold at all times to the right- 
hand side of (5.9) (i.e., essentially assuming that each 
patient is independent of the others or that there are 
never patients waiting to be admitted to the ED) using 
time-independent overall estimates for γS and γB and 
setting the cost parameters as discussed in Section 5.5. 
However, it would be more reasonable to use the thresh
old obtained this way as a starting point for determining 
what threshold to use and make adjustments accord
ingly. In our simulation study, which we describe in the 
following section, we considered a range of values for 
the fixed threshold value so as to make a fair comparison 
among the two policies we propose and the benchmark 
policy ESIB.

6. Simulation Study
The real test of how much benefit requesting beds early 
at the time of triage would bring and which one of the 
two policies performs better would be through imple
menting these policies in practice. However, because 
implementation of ESIB, FT, or CTT would mean a major 

change in the way ED-hospital operations are run, 
implementing these two policies for testing purposes 
was not an option. Therefore, we carried out a discrete- 
event simulation study instead. In this section, we report 
our findings.

Developing valid and useful simulation models for 
complex systems is a significant challenge. The main dif
ficulty, as explained clearly in chapter 5 of Law (2007), is 
to find the right level of detail that should be captured in 
the model. Obviously, the model should be a relatively 
close representation of the actual system, but this does 
not mean that a model that uses a more detailed and 
supposedly more “realistic” approach is better. The right 
level of modeling depends on many factors, including 
the goal of the study and the available data elements that 
can be used to populate model parameters. As a result of 
a months-long process during which we followed the 
guidelines provided in Law (2007), we converged on a 
model, carefully calibrated its parameters, and carried 
out formal model validation. Complete details of the 
model as well as a summary of the calibration and vali
dation process are provided in Section E of the online 
appendix. Here, we provide a broad description high
lighting the important features of our simulation model, 
which relax many of the simplifying assumptions of our 
mathematical models. In particular, unlike the simplified 
mathematical models we used to devise our policies, in 
our simulation analysis, we model the finite hospital 
capacity explicitly. The description is for the ED operat
ing under the current policy of no early bed requests, but 
as explained in the online appendix when simulating the 
ED with possible early bed requests, we use the same 
underlying model.

In the simulation model, patients of each ESI level 
arrive at the emergency department according to a non
homogeneous Poisson process with rates that depend 
on the day of week as well as the time of day. Each arriv
ing patient goes through triage, at the end of which the 
patient’s ESI level is revealed and the probability of hos
pital admission is determined. The ED has a finite num
ber of beds, and the number of beds available depends 
on the time of day. As long as there are beds available in 
the ED, patients are admitted to the ED right after triage. 
However, if there are no beds available, patients wait 
until one is available, with priorities determined accord
ing to patients’ ESI levels. (Complete details on how pri
oritization works and which patient is admitted to 
which pod in the ED are given in the online appendix.) 
A patient admitted to the ED goes through two stages of 
service. The first stage corresponds to ED workup, dur
ing which the ED personnel members carry out all the 
tasks needed to reach a diagnosis for the patient and per
form any urgent treatment that can be done in the ED. 
This first stage concludes with a disposition decision 
that requires the patient either to be discharged from the 
ED or to be admitted to the hospital. If the decision is to 
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discharge the patient, then the second stage corresponds 
to the discharge process for the patient. If the decision is 
to admit the patient to the hospital, then the second stage 
corresponds to the patient’s boarding time. Following an 
approach that is similar to that of Shi et al. (2016), we 
model the boarding time of a patient so that it depends 
on the availability of the hospital beds and the TPP time 
for the patient. Specifically, when the admit decision is 
made, if a hospital bed is available, then the boarding 
time simply equals the TPP time; however, if there are 
no beds available, then the hospital bed request joins a 
queue and waits for a bed to become available. (As pati
ents are discharged from the hospital and beds become 
available, they are allocated to the requests in this queue 
in an FCFS manner.) In this case, the boarding time of 
a patient is equal to the waiting time in the queue plus 
the TPP time. Once the second-stage service is over, the 
patient leaves the ED, making an ED bed available for 
patients who are waiting or will arrive in the future. 
Patients who are transferred to the hospital keep a single 
bed occupied during their stay. See Section E.4 in the 
online appendix for details on the probability distribu
tions for ED workup time, TPP time, and hospital length 
of stay.

We considered mainly two different scenarios for the 
simulation study. First, we assumed that the ED consis
tently operates under “normal” operating conditions as 
estimated using historical data (described in Section E in 
the online appendix), and we used long-run average 
analysis for making performance comparisons (Section 
6.1). Then, we considered an alternative setting where 
we assumed that over a period of six weeks, the ED 
experiences unexpectedly high patient volumes, possi
bly because of an outbreak, and we compared the per
formances of the alternative policies over a longer period 
that includes that six-week period (Section 6.2).

One important issue is deciding what criterion or cri
teria to use when comparing policies or investigating 
whether they would improve upon the current practice. 
As we explained at the beginning of Section 5, despite its 
unappealing vagueness, a more easily understood goal 
in practice would be something like “reduce patient 
length of stay but do not have too many false bed reques
ts.” It is difficult to work with such an evaluation criteria, 
but in the following, we make an effort to try to get to 
such an evaluation as much as possible. More specifi
cally, for performance comparison, we mainly consider 
average length of stay and average number of false bed 
requests per day (although we also report and comment 
on other performance measures, such as average length 
of stay for admitted patients alone and total number of 
early bed requests per day). One possible way to take 
both of these criteria into account is agreeing on a fixed 
value for the number of daily false bed requests and 
then, comparing the policies with respect to the average 
length of stay alone. However, not only is it difficult to 

configure CTT and FT so that they will hit the desired 
level of false bed requests precisely, what level of daily 
false bed requests would be considered reasonably small 
is not clear in the first place. This level would likely 
change depending on the ED as well as the conditions it 
is operating in. Therefore, rather than setting a specific 
level for the acceptable value of the average number of 
daily false bed requests, we consider a range of possibil
ities and compare the policies by identifying the efficient 
frontier and observing whether this frontier is domi
nated by any particular policy.

6.1. Scenario 1: Long-Run Average Analysis 
Based on Historical Estimates

For this study, we used a simulation model precisely as 
described in Sections E.1 and E.3 of the online appendix 
and made comparisons over long-run horizon averages. 
Currently, no early bed request system is in place, and 
therefore, the average number of false bed requests per 
day is zero. The average ED length of stay per patient is 
approximately 356 minutes, and the average ED length 
of stay for patients who are admitted to the hospital is 
approximately 532 minutes (based on data collected dur
ing 2012). If we use the policy of requesting beds early 
for all the patients regardless of their ESI levels, a policy 
that cannot possibly be implemented, we find from our 
simulation analysis that the average length of stay would 
be approximately 318 minutes, with a 95% half-width of 
0.6 minutes (the average for admitted patients would be 
441 minutes), and the expected number of false bed 
requests per day would be 66. It is useful to know this 
number (318) in minutes to get an idea about how small 
the average length of stay could potentially be, but given 
that getting to that figure would require 66 false requests 
per day, it is safe to say that in reality, it would be impos
sible to get anywhere close to it. A reasonable range for 
the number of false requests per day, at least for an ED 
that is similar to the one we consider here with an aver
age total patient load of roughly 180 per day and an aver
age number of daily hospital admissions between 30 and 
40 depending on the day of week, would be zero to three 
(at most up to five under exceptional circumstances). 
The question then would be, within this range, how 
much improvement one would get in terms of average 
length of stay by using early bed request policies and 
which specific policy would lead to the smallest average 
length of stay. To answer these questions, we simulate 
the system under FT using a range of values for the 
threshold ξ and simulate the system under CTT using a 
range of values for cw. For ESIB, we have not specified 
any policy parameters. However, one can obtain a range 
of performances for ESIB by choosing to turn it on and 
off during different time periods of the day rather than 
keeping it on the whole day. Thus, to be able to compare 
FT and CTT with ESIB, we simulate the system under 
ESIB under different settings each characterized by the 
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time interval during which ESIB is kept on. For each one 
of the three policies, we compute the values for the two 
performance criteria and determine whether the efficient 
frontier is dominated by any one of the policies. Figure 1
is a visual demonstration of how the three policies 
compare.

When constructing Figure 1, we conducted seven sep
arate simulation experiments under FT with seven dif
ferent choices for the threshold ξ and seven simulation 
experiments under CTT with seven different choices for 
cw. The choices for ξ were 0.91, 0.84, 0.81, 0.785, 0.736, 
0.71, and 0.692, so that the expected number of daily false 
bed requests covered the range from zero to three. The 
choices for cw (in terms of units per hour) were 0.06, 0.11, 
0.14, 0.16, 0.2, 0.24, and 0.26. Recall from Section 5.5 that 
our rough estimate for a lower bound on cw was 0.051, 
and thus, our choices for cw cover a range of plausible 
values for cw, with 0.051 taken as a lower bound. As to 
why we chose these seven specific values for ξ and cw, 
we had the following goal; we aimed to have them some
what evenly spaced over the respective intervals, but we 
wanted to do this in a way that the expected number of 
daily false bed requests under FT for a given threshold 
value matched with the expected number under CTT for 
a given value of cw so that we could compare the two 
policies over their performances with respect to the aver
age length of stay. For ESIB, we considered four different 
settings by considering four different time intervals dur
ing which the policy would be implemented. Specifi
cally, we used the intervals 3–4, 2–4, 1–5, and 12–6 p.m. 
Note that these intervals are chosen within the busiest 
time periods of the day as we have found that ESIB 
makes the most difference when implemented when the 
ED is busy.

In Figure 1, the marks (circles for ESIB, triangles for 
FT, and squares for CTT) represent the mean number of 
daily false bed requests and the mean value for the 

average length of stay, and the error bars around each 
point represent the 95% confidence intervals for the 
average length of stay. Because the confidence intervals 
for the expected number of daily false bed requests were 
very small, we did not show them on the figure. When 
simulating the system under all three policies and differ
ent policy parameter choices, the warm-up period was 
366 days (based on a warm-up period analysis), and we 
used a batch means method with a total simulation 
length of 365,250 days.

From Figure 1, we can observe that even with an aver
age number of daily false requests of one, there could be 
an approximately five-minute reduction in the average 
length of stay per patient over the status quo. Note that 
this average is over all the patients who arrive at the ED, 
not just patients who are admitted to the main hospital. 
If we look at the reduction in average length of stay for 
admitted patients only, the reduction is approximately 
10 minutes. (See Figure EC.3 in Section E.5 of the online 
appendix.) At first glance, a five-minute reduction may 
not seem important. However, considering that on aver
age more than 180 patients visit the ED on a given day, a 
five-minute improvement on average would be signifi
cant. This would roughly correspond to having an abil
ity to see two to three more patients every day at the 
current (year 2012) levels of patient length of stay. If the 
ED is willing to go up to three incorrect bed requests per 
day, then the decrease in the average length of stay 
would get close to 10 minutes, corresponding to an addi
tional capacity of about five patients per day. In short, 
our study suggests that requesting beds early at triage 
has the potential to make significant improvements in 
patient length of stay.

One important question is whether the two policies 
we propose, FT and CTT, make a difference over the 
benchmark policy ESIB. We can see from Figure 1 that 
they do. To be clear, even though the mean performance 
of FT appears to be better than ESIB in all the scenarios 
considered, FT is not always statistically superior to ESIB 
(at the 0.05 level of significance). However, CTT appears 
to be statistically better than ESIB across the board. 
Recall that both FT and CTT restrict the early bed request 
decision to ESI-1 and ESI-2 patients only. One question 
of interest is how their performances would be impacted 
if this restriction is lifted and patients from any ESI level 
would be eligible under FT and CTT. Figure EC.2 in Sec
tion E.5 in the online appendix answers that question. As 
we can see from the figure, which is constructed using 
different ξ and cw values when using FT and CTT for all 
ESI levels (to achieve daily numbers of false BeRTs that 
are comparable with those under the other policies), 
when the two policies are restricted to ESI-1 and ESI-2 
patients, their performances are statistically better. In 
fact, we tested using FT and CTT under different sets of 
restrictions (making ESI levels 1–3 eligible, 1–4 eligible, 
etc.), and we found that the best performance is clearly 

Figure 1. Long-Run Average Length of Stay and Long-Run 
Average Number of Daily False Bed Requests Under ESIB, 
FT, and CTT for Scenario 1 
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achieved when the policies are restricted to ESI-1 and 
ESI-2 patients only. (These plots are omitted for brevity.)

If we compare the performances of CTT and FTT, we 
can see from Figure 1 that CTT appears to either domi
nate or be equivalent to FT over the range of practically 
feasible policy parameter settings considered. In most 
cases, the performances of CTT and FT appear to be stat
istically indistinguishable. However, it is notable that in 
some cases, CTT is statistically superior, and its mean 
performance is consistently better than that of FT. If we 
look at how big of an improvement CTT brings over FT, 
we see that the improvement in the mean length of stay 
can be up to two minutes. Even such an improvement 
would be important, especially because CTT essentially 
comes with no extra “cost.” It is no more difficult to 
implement than FT because both policies would require 
adding a simple decision support tool to the existing 
electronic medical record system in place. It is also not 
clear whether the supposed potential advantage of FT 
over CTT, which is that the admission threshold is fixed 
at all times, is all that important. This is because what
ever threshold level the decision support tool is using at 
any given time will be largely invisible to the staff, and 
thus, there does not appear to be any clear reason why 
changing the threshold level based on system conditions 
would have some adverse effects. Still, there could be 
some hidden benefits to using a simpler policy, like FT, 
and thus, one might question whether it is worth skip
ping it in preference to CTT.

Note that in Section E.5 of the online appendix, we 
also provide plots of both the overall ED patient length 
of stay and the ED length of stay for admitted patients 
only with respect to the average number of daily total 
early bed requests (not just false requests). We can see 
that plots for the average daily total early bed requests 
are similar to those we have for the false early bed 
requests, and thus, one can reach the same conclusions, 
even if the focus is on keeping the total early requests 
low as opposed to only the false ones.

There is, however, one important issue to consider 
before reaching a final determination as to whether one 
policy appears to be better than the other. For the simula
tion scenario we considered in this section, we assumed 
that every week, the ED experienced a stochastically 
identical patient arrival process. As explained in Section 
E.1 of the online appendix, this arrival process is found 
as a good fit based on the historical data and thus, ge
nerally captures the reality of the ED where our data came 
from, but nevertheless, this fit is still on average. Through 
statistical estimation, we essentially constructed a typical 
week for the arrivals to the ED and assumed that this typi
cal week repeated itself over and over again. (To be clear, 
the arrival process is stochastic, and thus, the realizations of 
the arrival process are not identical across weeks; however, 
they are identical stochastically.) In reality, however, every 
now and then there are shifts in the patient demand the ED 

observes, which would make a typical weekly arrival proc
ess a poor fit to the actual arrival process observed during 
or after the shift. For example, with the flu season, EDs typ
ically observe an increase in patient arrivals, and this causes 
them to live with elevated demand levels for a period of 
time. It is thus also of interest to investigate the performan
ces of CTT and FT over such a period when the ED is hit 
unexpectedly by a more than usual level of patient de
mand. This is what we consider in scenario 2.

6.2. Scenario 2: Finite-Horizon Analysis with an 
Elevated Arrival Pattern

The Centers for Disease Control and Prevention has 
developed a tool called FluSurge 2.0 (available from its 
website (Centers for Disease Control and Prevention 
2017)), which can be used to predict the increase in 
demand hospitals will observe in the case of an influenza 
pandemic. The tool provides the user several options 
for creating different pandemic scenarios. The possible 
choices for the duration of the pandemic are 6, 8, and 12 
weeks. During the first half of the pandemic, every day 
the arrival rate of patients increases by some a percent
age compared with the previous day, peaks right in the 
middle of the pandemic’s total duration, and then, 
decreases by a percentage every day compared with the 
previous day during the second half of the pandemic. 
The default value for a is three. Note that our goal in this 
section is to consider a plausible scenario under which 
the ED experiences a more than usual level of patient 
demand for one reason or another over a period of a few 
weeks, not necessarily to consider pandemic-level condi
tions. Nevertheless, we can take the assumptions of Flu
Surge 2.0 as a starting point and modify them somewhat 
to construct alternative scenarios under which patient 
demand is elevated, even though this elevation may not 
be as assumed by FluSurge 2.0.

Specifically, for scenario 2, we simulate the ED over a 
period of 18 weeks only. (The warm-up period for each 
run was 60 days, whereas the number of replications 
was 500.) During the first and last six weeks, the arrival 
process is exactly the same as that assumed for scenario 1. 
The middle six-week period is what we call the outbreak 
period. During the first three weeks of the outbreak peri
od, the arrival rates for each patient class corresponding 
to each day of week increase by 1.5% every day, and dur
ing the last three weeks of the outbreak period, the arrival 
rates for each patient class decreases by 1.5% every day. 
Thus, the arrival rates peak in the middle of the outbreak 
period and go back to the first six-week period levels by 
the time the last six-week period starts. Note that the day 
of the week still affects the arrival rate because in the sim
ulation study, we use the arrival rates corresponding to 
whichever day of the week the simulation is in. For exam
ple, if the nth day of the outbreak period, with n < 21, is a 
Monday, then the arrival rates for that day are (1:015)n 

times of whatever the arrival rates are for a typical 
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Monday (i.e., Mondays outside the outbreak period). In 
this scenario, we consider two different cases for the 
main hospital’s surge capacity, with the hospital’s bed 
capacity increased to 400 or 450 (from the baseline cases 
of 310 and 350 beds depending on the time of day as 
assumed in scenario 1), whereas the ED’s bed capacity 
remains the same. (Hospitals do resort to such capacity 
increases in cases of emergencies that overwhelm their 
regular capacities. We should note that without the 
surge capacity, our policies would not make a differ
ence.) Figure 2 shows the performances of ESIB, FT, 
and CTT over the 18-week period the system was simu
lated under the four different assumptions for the hos
pital bed capacity.

Because we do not have ED data on patient length of 
stay for the outbreak scenario considered here, we can
not make strong claims on what the average length of 
stay would be under the current policy of not making 
any early bed requests. However, in our simulation 
study, we found that when the inpatient bed capacity 
was 400 and no beds were requested early at triage, the 
mean value for the average length of stay was 543 
minutes, with a 95% half-width of roughly 10 minutes. 
(When inpatient bed capacity was 450, the average leng
th of stay and the approximate 95% half-width were, 
respectively, 514 and 8 minutes.) Thus, we can see from 
Figure 2 that all three policies would bring substantial 
improvements even if the ED is comfortable, with only 
one false bed request per day on average. Furthermore, 
unlike the case in scenario 1, for higher levels of accept
able false early bed requests at least up to a level of five 
false bed requests per day, the average length of stay 
continues to decline substantially, particularly under 
CTT. For example, when the hospital bed capacity is 400, 
the average length of stay is around 500 minutes when 
the average number of daily false bed requests is close to 
one under CTT; if the ED is willing to go up to three false 
requests per day on average, then the average length of 
stay drops to less than 460 minutes.

If we compare the performance of the benchmark pol
icy ESIB with those of FT and CTT, we can see that both 
FT and CTT outperform ESIB. The performance of CTT 
is statistically and substantially better than the perform
ance of ESIB across the board. As for FT, its performance 
is also statistically better than ESIB when the number of 
hospital beds equals 450. When the number of hospital 
beds equals 400, even though the performance of FT is 
not statistically better than that of ESIB, its mean per
formance is still consistently better than ESIB. Overall, 
we can conclude that the policies we propose bring sub
stantial benefits over the benchmark policy, particularly 
when ED experiences higher than usual patient load.

Finally, we can also observe from the figure that there 
is a very clear difference between the performances of 
CTT and FT. It is not only that the performance of CTT is 
statistically better than that of FT, but also, the difference 
in their means is substantial. For example, with an aver
age number of false bed requests of two, the difference 
between the average length of stay under CTT and the 
average length of stay under FT would be roughly 25 
minutes with an inpatient bed capacity of 400, whereas it 
would be close to 30 minutes with an inpatient bed 
capacity of 450. In short, it appears that our state- 
dependent policy CTT appears to be much more res
ponsive to unexpected fluctuations in crowding levels, 
which might be a result of unexpected deviations from 
the regular patient arrival patterns.

In Section E.6 of the online appendix, we also provide 
plots for both the overall ED length of stay and the ED 
length of stay for admitted patients only with respect to 
the total number of daily early bed requests. As in the 
case of scenario 1, one can make observations that align 
with what we noted based on plots for the daily number 
of false bed requests.

Going over the simulation results for both scenario 1 
and scenario 2, we can identify three main takeaways. 
First, it appears that requesting beds early at triage for 
patients who have a high probability of being admitted 

Figure 2. Average Length of Stay Vs. Average Number of Daily False Bed Requests Under FT and CTT for Scenario 2 
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to the hospital has the potential to significantly improve 
patients’ length of stay, and the improvements would 
likely be more substantial over periods when the ED 
observes elevated levels of patient arrivals. Second, the 
two policies we propose, FT and CTT, appear to bring 
significant improvements over the benchmark policy 
ESIB, again particularly when the ED experiences a 
high rate of patient arrivals. Third, CTT, by taking into 
account dynamically changing ED census levels, app
ears to be much more responsive to changing external 
conditions that impact patient demand, leading to sub
stantially lower levels of patient length of stay for fixed 
levels of daily average false bed requests when com
pared with both FT and ESIB.

6.3. Scenario 1 Revisited: Errors in Admission 
Probability Estimates

One implicit assumption we made in our analysis so far 
was that the admission probabilities were correctly esti
mated. In reality, however, errors in estimation are inevi
table, and thus, it is of interest to investigate their impact 
on the performances of our policies. In this section, we 
are interested in how the performances of our policies 
would change if there is sampling or systematic error 
in the estimation of admission probabilities. We experi
mented with three different settings. In one setting, we 
assumed that there was only sampling error, and thus, the 
actual admission probability for a patient was sampled 
from the truncated normal distribution with a standard 
deviation equal to 10% of the mean. In the remaining two 
cases, we assumed that there was a systematic error with 
consistent overestimation for all patients in one case and 
with consistent underestimation for all patients in the 
other. More specifically, in the overestimation case, the true 
admission probability was 90% of the estimated admission 
probability, and in the underestimation case, the true 
admission probability was 110% of the estimated admis
sion probability truncated at one.

Figure 3 shows how the performances of CTT and FT 
are impacted by the admission probability estimation 
errors. To aid in comparison, we also plotted the per
formances for the case without any errors. (The no-error 
cases are the same as those plotted in Figure 1.) We can 
see from the figure that there is no distinguishable differ
ence between the performances when there is no error 
versus when there is sampling error. When the admis
sion probabilities are systematically overestimated, we 
can see that the performance curve is shifted to the left 
and upward compared with the no-error case, meaning 
that the policy would lead to more incorrect bed requests 
and consequently, lower ED length of stay. On the other 
hand, when the admission probabilities are systemati
cally underestimated, the performance curve is shifted 
to the right and downward, meaning that the policy 
would lead to fewer incorrect bed requests and conse
quently, higher ED length of stay. This is not surprising 
because when admission probabilities are overestima
ted, the admission probability thresholds are exceeded 
by some of the patients who normally would not, and as 
a result, beds are requested early for more undeserving 
patients, leading to an increased number of daily incor
rect early bed requests but also, an increased number of 
correct early bed requests, which leads to improvement 
in ED length of stay. When admission probabilities 
are systematically underestimated, some of the patients 
who would normally qualify for early bed requests do 
not, and as a result, fewer early bed requests are made, 
leading to lower errors but also, higher lengths of stay 
because underestimation also causes some of the true 
admits to be missed.

This analysis shows that our proposed policies will 
likely not be impacted significantly by sampling errors 
that are not too large. (Obviously, if the estimation can 
be significantly off having high variance, our policies 
would not perform well, just as any policy would not 
when implemented with incorrectly estimated policy 
parameters.) On the other hand, if the estimation error is 

Figure 3. Average Length of Stay and Average Number of Daily False Bed Requests for Scenario 1 with Errors in Admission 
Probabilities 
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systematic, then the performances will be significantly 
impacted. However, in that case, the error should be 
obvious to the ED managers relatively quickly, and cor
rective action can be taken. As we explain in Section 5.5, 
even when estimation probabilities do not have errors, 
the policy parameters (the cost terms in the case of CTT 
and the threshold in the case of FT) are not fixed, prede
termined values. In implementation, proper adjustments 
would need to be made so that the ED will operate in a 
way that works well in practice, carefully balancing the 
reduction in length of stay with incorrect bed requests. 
Therefore, in practice, if there is a systematic estimation 
error, the ED managers would make adjustments either 
in their probability estimates or directly in the policy 
parameters so that the ED will operate in the regime they 
find to be ideal. In other words, in the case of systematic 
errors, the underestimation and overestimation curves in 
the figures can practically be adjusted with time so that 
the impact of estimation errors would be negligibly small.

7. Concluding Remarks
The importance of improving patient flow in emergency 
departments and hospitals and consequently, reducing 
patient wait times is clear. There also appears to be a 
wide consensus on the idea that meaningful improve
ments in ED waiting times and lengths of stay can only 
be achieved through a systems approach that views the 
ED and the main hospital together as opposed to two dis
tinct units. This essentially necessitates rethinking some 
of the traditional ways EDs and hospitals operate and 
developing new policies and procedures that require 
coordination between them. However, to the best of our 
knowledge, concrete ideas about how such new policies 
and procedures would look and scientifically rigorous 
studies on their potential impact have been largely missing. 
This paper makes a contribution toward filling this gap.

The paper is built on a simple and intuitively sound 
proposition; for patients who are likely to be admitted to 
the hospital, it might be worth it to plan ahead and pre
pare their hospital beds as the patients go through their 
examination and treatment in the ED. It is, however, not 
quite clear whether a patient’s estimated probability of 
being admitted is high enough to justify requesting a 
bed early and whether and how the answer to this ques
tion should change with changing system conditions. 
We provided answers to these questions in this paper. In 
particular, we came up with specific policy prescriptions 
that clearly outlined how to decide whether a hospital 
bed should be requested for a patient at the time of tri
age. We found that the improvements in average patient 
length of stay with early bed requests could be signifi
cant, and the policies we propose have the potential to 
perform significantly better than a simple benchmark 
policy, which can readily be implemented in any ED that 
uses ESI classifications for triage with no further need for 

a policy development. We also found that policies that 
make early bed request determination for a patient 
based on patient-specific information as well as chang
ing census levels have the potential to work signifi
cantly better than policies that only use patient-specific 
information.

The policies we develop, even the state-dependent 
CTT, are easy to implement. Even though we used a spe
cific ED as our data source, these policies can easily be 
used in any other ED because the general structure we 
assumed for the patient flow is shared by many (if not 
all) EDs. The only additional work needed would be to 
estimate key model parameters, such as arrival rates, by 
analyzing historical data. Integration of our methods 
with the existing electronic healthcare record systems is 
also not a big challenge. One potential issue could be 
that when it comes to implementation, for large aca
demic hospitals with many admitting services, it might 
be necessary to estimate not only the probability that 
patients will be admitted to the hospital but more specifi
cally, to which service and/or unit of the hospital they 
will be admitted. Even if that is the case, however, it is 
not difficult to develop another regression model to 
make that estimation. In short, there do not appear to be 
serious technical obstacles toward making “good” early 
bed request decisions, in particular using the policies we 
developed in this paper.

There is one major obstacle, however, and that is 
largely a cultural one. The idea of requesting beds early 
at triage seems simple but would in fact be a major 
change if implemented. The ED and the hospital staff are 
deeply accustomed to years of practice of starting the 
hospital admission process only after the patients’ ED 
evaluation and treatment are over, the results of any 
blood or other diagnostic tests are available, and nothing 
else is left to be done for the patients in the ED. There
fore, it would be reasonable to expect that the immediate 
reaction, particularly from the main hospital staff, will 
be one of resistance to such a change. There will be some 
unease with the idea of making preparations for a 
patient for whom a complete picture is not known and 
who may in fact eventually not be admitted to the hospi
tal. Even if the policy is implemented, early on, particu
larly if there are many false early bed requests, the staff 
involved might lose faith in the new policy, possibly 
resulting in long patient transfer preparation times and 
ultimately, resulting in the new policy’s failure. There
fore, for success, prior to any implementation, buy-in 
from all the major stakeholders is essential. First, the hos
pital management should be convinced that the newly 
proposed policy has significant potential to make posi
tive change. Second, with the management’s help, the 
ED and the hospital staff should be educated in what 
way the new policy will make a difference, what the 
challenges will be, and what would be reasonable to 
expect when moved to implementation. Needless to add 
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of course, when moved to implementation, the proposed 
policies should start delivering what they promised 
quickly as otherwise, there will be significant push 
toward going back to the business as usual, possibly 
making it even more difficult to test such policies in the 
future. In short, two things are essential before any 
implementation: a policy whose superiority we are abso
lutely confident of and a systems-level trust in the policy, 
which can only be won through educating the staff and a 
scientifically sound, simulation-based demonstration of 
the policy’s expected performance.

The change we demand from the practitioners is sig
nificant. Therefore, a single paper will not and should 
not be sufficient to make a strong-enough case that the 
hospitals should move toward implementation tomor
row. However, the potential for improvement is strong, 
and the policies we propose, even if they are not imple
mented exactly as we describe in this paper, can help 
inspire new ideas and form the basis for alternative poli
cies in the future. It is worth noting that we do not make 
any claims in regard to the optimality or near optimality 
of the policies we propose, and we have no doubt that 
future work will improve upon the policies we propose. 
One interesting idea would be to consider making early 
bed requests not only at the time of triage but over the 
course of the patients’ sojourn in the ED until their dispo
sition decisions. Any uncertainty present at the time of 
triage regarding a patient’s eventual disposition might 
diminish during the patient’s workup, and so, it might 
be preferable to wait some time before deciding whether 
a hospital bed should be requested for the patient. More 
research is needed not only to devise such potentially 
better policies but also, to independently test our find
ings in this paper and validate or invalidate our conclu
sions regarding the potential benefits of making early 
bed requests in other hospitals. This is an important ave
nue of work as it would not only potentially lead to a 
transformation in the way hospital admissions from the 
ED are handled but also, instigate a revolution in health
care operations in hospitals with a system-oriented, ana
lytical, and data-driven approach that requires a higher 
degree of integration between the ED and the main hos
pital compared with what we have today.
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Endnotes
1 Boarding time is defined as the amount of time a patient who is 
admitted to the hospital spends in the ED bed from the time the admit 
decision for the patient is given until the patient vacates the ED bed for 
transfer to the main hospital.
2 ED length of stay for a patient is defined as the time between the 
patient’s arrival to the ED until her departure.
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